The Dao of Surface Plasmons

Stefan Franzen

NC State University



Two ways to look at nature ...

... aS a wave or a particle.



An ancient idea: Opposing views confront each other
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This ancient way of looking at nature is analogous
to the central feature of quantum mechanics, the
wave-particle duality.
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If a wave acts like a particle, then a particle must act
like a wave. Example: electron diffraction




The yin and yang of complex numbers
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This applies to both waves and particles.




Absorption of light by hydrogen

Nodal symmetry of
excited state hydrogen

cConservation
Of Energy

.

Spherical symmetry of
ground state hydrogen



Symmetry breaking by electromagnetic wave
Conservation of angular momentum
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In-phase oscillation breaks the symmetry
Nodes
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Out-of-phase osclillation transfers momentum
Nodes
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Net change from one photon and one atom....
Nodes
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...to an excited state atom and no photon.
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We can predict the
H atom absorption
and emission lines

Hydrogen absorption spectrum

Hydrogen emission spectrum
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The way to understand nature Is to realize the
limitations of our individual viewpoints, but then to
look for unifying principles or concepts.

Our goal Is to understand surface plasmon
resonance using an optical “way”. We use an
Intuitive picture rather than mathematics to
describe the phenomenon.
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We can obtain understanding directly from nature.




Reflection and refraction preserve phase
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The induced field must be opposite in sign in a conducting
medium. Therefore, the dielectric function is negative.
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Attenuated total reflection (ATR)
Fourier transform infrared (FTIR)

Evanescent Wave
Bulk Sample

ATR Crystal
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Surface plasmon resonance (SPR)
IS a speclal case of ATR spectroscopy
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The name we give to something determines “what it is”,
yet there are many possible ways to name something.
There are many ways to observe a natural phenomenon.



A plasmon is a collective oscillation
of conduction electrons
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Electron motion

Force + Friction = Driving term
e

Conductor 'Y X =27

Dipole

Polarization (dipole per unit volume)
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Susceptibility: measure of polarization

in an electric field Electric vector

of light
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Natural frequency of
electronic oscillation
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Electric field driving oscillation
at the natural frequency
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Electric field driving oscillation at
the any frequency lower than the
natural frequency = reflection
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Electric field driving oscillation at
the any frequency lower than the
natural frequency = reflection
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Electric field driving oscillation at
the any frequency lower than the
natural frequency = reflection
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Electric field driving oscillation at
the any frequency lower than the
natural frequency = reflection
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Electric field driving oscillation at
the any frequency lower than the
natural frequency = reflection
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This oscillation gives rise to
reflection by conductors.



Electric field driving oscillation at
the natural frequency
and matched wave vector

Z — Wave
vector

X —wave vector

The z-polarization
IS an evanescent
save (like ATR)
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Conditions for absorption by surface plasmon

The forcing term is the electric field of the incident light.

Conservation of energy: the frequency of the incident light
matches the frequency of the plasmon.

Conservation of momentum: the angle of the incident light
matches the spatial distribution of the plasmon.

These conditions do not require a noble metal or even a
metal, but they do require a conductor of electricity.



Optical properties of conductors
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Optical properties of conductors

Reflectance Absorbtivity
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Surface selection rules

Reflective Regime



For €. < 0 the p-polarized image charge

adds constructively to the incident field.

D polarization

+ S polarization
+




For €. < 0 the p-polarized image charge

adds constructively to the incident field.
p polarization




For €. < 0 the s-polarized image charge
adds destructively to the incident field.

s polarization

AlIr

Conductor




Only the parallel component of a transition
Dipole moment is observed on a conductor

Air —

Conductor

Observed Invisible
Image field: Adds Cancels



Surface selection rules

Plasmon Regime



Kretschmann configuration

ERE = €~ & IRE = internal reflecting
element
C = conductor
S = substrate

+ +
D polarization
s polarization

€IRE

Ee
85

Thin conducting film on a prism



On a metal surface there is a local field
The image field is critically damped

wave vector matching is required
+ p-polarization

How big is g?

conductor

Local field E, = gE;



No local field enhancement is possible
on a surface for s-polarization

k-vector matching is not possible

+ S-polarization
Alr

Conductor




Non-SPR resonant condition

ATR spectroscopy on a metal
Transition dipole
moment is

perpendicular PR ES —

T Z —wave
E, vector
1 X — wave vector

Incident wave
IS reflected

E

P-polarized absorption by analyte



SPR resonant condition

Plasmon enhancement is possible
Transition dipole
moment is

perpendicular PR EX —

T Z —wave
E, vector
1 X — wave vector

Incident wave
Is “extinguished”



SPR resonant condition

Plasmon enhancement is possible
Transition dipole
moment is

perpendicular Th E, »
Ep

Z — Wave
vector

1 X — wave vector

Incident wave
Is “extinguished”



SPR resonant condition

Plasmon enhancement is possible

Transition dipole
moment is
perpendi

Z —wave
E vector

1 X — wave vector

Incident wave
Is “extinguished”






Kretschmann configuration

>g > €

IRE = internal reflecting
element

c = conductor

S = substrate

SIRE s

D polarization
s polarization

Thin conducting film on a prism



Attenuated total reflection (0 > 0_.icq )

Condition for surface plasmon resonance
P polarization
S polarization

-




Surface Plasmons: A special case of ATR

Monitor SPPs In the
Kretschmann-Raether |
configuration 4 | 4

When 6, > 6, total internal
reflection of p-polarized light

| /"/:
7 substrate

Evanescent field extends from N
the conductor interface to the
! - conductor
conductor surface VK
In-plane wavevector (k,)
depends on incident angle (6,) ambient

Couple to the surface plasmon
polariton when k, = Kgpp



Surface Plasmons:

Each incident angle has a
unique k, for plasmon
coupling

At resonance there is no
reflected light, all energy
couples to the SPP

SPPs are visible as a dip in
reflected intensity as a
function of incident angle at
constant w

This only occurs for incidence
light with electric field

component in the x-direction,

thus only for p-polarization

Observation
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Surface Plasmon Resonance on Gold
Localized surface plasmon resonance
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What Is the relationship?



Indium Tin Oxide (ITO)
Transparent conducting thin film
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Surface Plasmon Resonance on ITO
Calculated Angle Range: 42°-53°
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Surface Plasmon Resonance on ITO
Experimental  Angle Range: 42°-53°
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Concept of a LSPR
Localized Surface Plasmon Resonance
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Teranishi et al. J. Am. Chem. Soc., 2009, 131, 17736-17737



Concept of a LSPR
Localized Surface Plasmon Resonance
Field at molecule = E + E

Are the phases the same?
This is a requirement for enhancement!
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How are LSPR and SPR related?
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Absorption and dispersion in conductors
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The planar limit of LSPR as a limiting case of an oblate spheroid

Sphere Oblate ellipsoid Planar limit

The planar limit of LSPR as a collection of nanoparticles
+ 4+ + -+ + + +



Hybrid plasmons

50 nm 50 nm
Au Nano Au
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1. Franzen. S; Rhodes C.; Cerruti, M.; Efremenko, A.Y.; Gerber, R.W.; Losego, M.; Maria, J.-P.; Aspnes D.;
“‘Equivalences between Gold and Indium Tin Oxide as Plasmonic Materials” Opt. Lett., 2009, 34, 2867-2869

2. Gerber, R.W.; Leonard, D.N.; Franzen. S; “Conductive thin film multilayers of gold on glass formed by
self-assembly of multiple size gold nanoparticles” Thin Solid Films, 2009, 517, 6303-6308



Optical proof of parallel polarization
Of SPR and [B)erpendicular ENZ mode
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A new mid-IR plasmonic material
that is a “good as gold and better”
CdO: X (doped cadmium oxide)

Khamh, H.; Sachet, E.; Kelley, K. ; Maria, J.-P.; Franzen, S.; “As good as gold and
better: conducting metal oxide materials for mid-infrared plasmonic applications”
J. Mater. Chem. 2018, 31, 8326-8342

Sachet, E.; Shelton, C.; Harris , J.; Gaddy , B.; Irving , D.; Donovan , B.;
Hopkins, P.; Sharma , P.; Sharma, A.L.; lhlefeld, J.; Franzen, S.; Maria, J.-P.;
Curtarolo, S. " Dysprosium doped cadmium oxide: A gateway material for mid-
infrared plasmonics " Nature Materials, 2015, 14, 414-420



CdO:Dy for spectroscopy

Flow cell to record SPR maps at various pressures of N,O




CdO:Dy SPR of monolayers

Motivation

2% change in &,
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IR-SPR shows shifts as large as Au

Hexadecanethiol (HDT) SAM on CdO:Dy

104°

Method: 10 mM of
HDT in THF for 1 hr at
room temperature
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Self-assembled monolayer packing
IS not optimal on metal oxides

e HDT SAM on Au .
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Schréter, A., Kalus, M. & Hartmann. Beilstein J. Nanotechnol. 3, 65-74 (2012)
Rosu, D. M. et al. Langmuir 25, 919-23 (2009).



How can we detect surface
enhancement parallel
to the surface?
SEIRA (surface enhanced infrared)



Gas absorption bands in the IR

Absorption bands alter the dielectric function of the environment
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CdO:Dy for spectroscopic dection

CdO:Dy sample in air represents the background
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Detection of gas phase N,O by IR-SPR
20 PSI of N,O
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Detection of gas phase N,O by IR-SPR
80 PSI of N,O
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How can we use these materials?

SEIRA (surface enhanced infrared)

IS a sensitive way to detect optical
responses in polymers

This Is analogous to Biacore,
but much more sensitive



Polymers for systematic detection

Poly(methyl methacrylate-alt-maleic anhydride) - PMAMMA ATR data
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Polymers for systematic detection

Data showing 2000 - 2500 cm™
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BAPN

Mmers for systematic detection
3.5% PMA
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Normalized Axis
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Polymers for systematic detection
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Polymers for systematic detection
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Conclusion

This research demonstrates the equivalence of noble
metals (Au and Ag) with conducting metal oxides (CMQOSs)
as materials for surface plasmon resonance. Since CMOs
have bulk plasma frequencies that are in the infrared
region, they are natural materials for studies of the
Interaction of molecular infrared transitions due to
vibrations and the SPR phenomena. Although Ag and Au
can be used to SEIRA, CMOs have the advantage that
they can be tuned and the vibrations can be studied both
on and off resonance. We find that molecular vibrations are
weakly coupled to surface plasmons. There is no evidence
of strong coupling or Rabi splitting in these systems.



