### The Dehaloperoxidase Paradox: How can one structure provide different functions?

## NC State University

**Raleigh, North Carolina** 

## The Dehaloperoxidase Paradox

- O<sub>2</sub>-Transport
  - Reversible O<sub>2</sub>-binding is mediated by only a ferrous heme

$$-Fe^{\parallel} \xrightarrow{+O_2} -Fe^{\parallel}$$
Ferrous Oxyferrous

Peroxidase Activity

- Ferric resting state; oxyferrous is inactive



Two major functions related to oxygen in living organisms

**Transport:** requires that the  $O_2$  molecule bind reversibly to a metal (Fe or Cu).

Activation: requires that the O-O bond of the  $O_2$  molecule is cleaved leading to chemical change.

These two functions are normally thought to be <u>mutually exclusive</u>.

Belyea et al. Biochemistry 2005, <u>44</u>, 15637 Franzen et al. BBA 2007, <u>1774</u>, 121 Feducia et al. Biochemistry, 2009, 48, 995 Zhao et al. J. Phys. Chem. B (2012), 116, 12065 Zhao et al. J. Phys. Chem. B (2013), 117, 8301 Chen et al. J. Biol. Chem. (1996) 271., 10515 Osborne et al. BBRC (2004) *324*, 1194 Du et al. Biochemistry (2010) 49, 6404 Davydov et al. JACS (2010) 132, 14495 Wang et al. Biochemistry, (2013), 52, 6203

# DHP has a globin structure and functions as both a hemoglobin and a peroxidase



Recent work suggests other functions are possible.

#### **DHP** monomer has a globin fold and function



#### **DHP** has a natural peroxidase function

#### **Engineered globin peroxidases**

Mauk group Watanabe group



## Two unique features of DHP

**Enlarged (or flexible) distal pocket:** permits binding of a range of substrates including some very large aromatic molecules.

**High reduction potential:** permits function of "shifted" peroxidase cycle and other non-standard chemistries Such as peroxygenase, or sulfide oxidase.

How do these features expand the repertoire of catalytic functions?

## Anomalous redox potential of DHP



## Protein Crystallography



Crystallized protein is used to determine the protein's 3-D structure via X-ray diffraction





### Data collection at the Advanced Photon Source – Aroonne Natl. Lab.



- Tunable X-rays
- 16 published structures
- >70 structures solved
- Time-resolved
   X-ray experiment

De Serrano et al. Acta Cryst. D 2007, <u>63</u>, D098ettanb et al. Peptide Sci A Chen et al. Acta Cryst. D 2009, 65, 34-40D'Antonio et al. Biochemistry de Serrano Acta Cryst. D, 2010, <u>66</u>, 529-538 Thompson et l. Biophys. J. 2010, <u>99</u>, 1586-1599

### Comparison of DHP and Mb Structures



Mb DHP

### X-ray crystal structures at 100 K



de Serrano et al. Acta Cryst. D 2007, 63, 1094-1101

Chen et al. Acta Cryst. D 2009, 65, 34-40

## Inhibitor bound structures



## Spectroscopic and structural studies of DHP support binding of 4-halophenols in the pocket

LaCount et al. (2000) *J. Biol. Chem.* 275, 18712 Smirnova et al. JACS 2008, <u>130</u>, 2128 Nienhaus et al. J. Phys. Chem. B 2006, <u>110</u>, 13264 Nienhaus et al. Biochemistry, 2008, <u>47</u>, 12985

**3FNW = 4-IP 3FNX = 4-BP 3FNY = 4-CP 3FNZ = 4-FP** 

## Raman probe of binding in <sup>a</sup> the internal binding site

Different modes of binding are observed in the core size marker modes of the resonance Raman spectrum.

(X = I > Br > CI > F > H)



Thompson, Franzen et al. Biophys. J. (2010), <u>99</u>, 1586-1599





Franzen, Thompson and Ghiladi, BBA (2012) <u>1842</u>, 578-588





# Hypothesis: Autooxidation is not physiologically relevant for DHP

Oxidized forms of DHP may form during a catalytic cycle. Reductase may be needed for this reason, but not because of (auto)oxidation by  $O_2$ .

There is no need for complicated regulation of the distal pocket such as observed in most hemoglobins or myoglobins.





De Serrano and Franzen Peptide Science ASAP



# Time-resolved X-ray crystallography confirms the enlarged distal pocket



# Time-resolved X-ray crystallography confirms the enlarged distal pocket



Zhao et al. Biochemistry (2013) 52, 2427

## Initially CO moves to the primary Xe binding site



The single site for of diatomic ligand binding in DHP can be contrasted with the more complex series of sites in Sperm Whale myoglobin, studied by many groups using time-resolved X-ray.

## CO escapes from the distal pocket in the crystalline form



Zhao et al. Biochemistry (2013) 52, 2427

## Distal pocket of DHP permits Free entry and exit of CO (and O<sub>2</sub>)

The CO ligand moves immediately to the Xe binding site in DHP. This is NOT the same as the "docking" site seen in other time-resolved X-ray structures.

The docking site is closer to the heme Fe

CO must push other amino acids away and is trapped by them.

CO does not escape from the protein, but moves to Xe sites and then recombines.

# Hypothesis : Substrate binding can trigger switching between functions

Promiscuity in DHP may be related to the diversity of brominated (and chlorinated) molecules in the environment.

The different fates of molecules depends on specific chemistry. For example, 4-bromophenol radicals Lead to polymerization and therefore they do not form (4-BP is an inhibitor). 2,4,6-tribromophenol radicals Lead to quinone formation, which is favorable so this Chemistry occurs. Oxidation of 2,4-dibromophenol By O-atom transfer is favorable. It should also bind. We can measure competitive binding equilibria.

## Internal substrate binding site



# Comparison of substrate and inhibitor binding sites

### Substrate

### Inhibitor



PDB: 1EWA 3LB1-4