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The Dehaloperoxidase Paradox
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Two major functions related
to oxygen In living organisms

Transport: requires that the O, molecule bind
reversibly to a metal (Fe or Cu).

Activation: requires that the O-O bond of the
O, molecule is cleaved leading to chemical change.

These two functions are normally thought to be
mutually exclusive.
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DHP has a globin structure and functions
as both a hemoglobin and a peroxidase
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Recent work suggests other functions are possible.



DHP monomer has a globin fold and function

DHP was first discovered as an

Oxygen storage protein in A. ornata
Bonaventura et al. Comp. Biochem. Phys. 1977, 56A, 179

Sperm Whale Myoglobin
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DHP has a natural peroxidase function

Engineered globin peroxidases
Mauk group
Watanabe group
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Two unique features of DHP

Enlarged (or flexible) distal pocket: permits binding
of a range of substrates including some very large
aromatic molecules.

High reduction potential: permits function of “shifted”
peroxidase cycle and other non-standard chemistries
Such as peroxygenase, or sulfide oxidase.

How do these features expand the repertoire of
catalytic functions?



Anomalous redox potential of DHP

DHP
Fel+
E, = +221mV
Globins
E, = +50 mV
Peroxidases
E, =-270 mV Fes+

D'Antonio et al. J. Electroanal. Chem. 2012, 668, 37

A 015

Absorbance

0.00: =t

0.10 |

0.05

huax(hm) 407 432
EAPP (mV) vs SHE

-103

+127
+147
+167

+187
+207
+227
+247

+267
+497

320 370 420 470 520
Wavelength (nm)
B 280
B 200 E,= +221mV
-
& 220 |
g I
E
— 160
Q.
=
m =
100 11111111111111111111
- -0.6 0.0 0.6 2

log [Ox]/[Red]



Protein Crystallography

Crystallized protein is

Coverslip with protein

solution (red) used to determlne the
|‘ High - vacuum -
grease protein’s 3-D structure
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Data collection at the Advanced

Photon Source — Araonne Natl. Lab.
Tunable X-rays

* 16 published
structures

e >70 structures
solved

* Time-resolved
X-ray experiment
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Comparison of DHP and Mb Structures




X-ray crystal structures at 100 K
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Inhibitor bound structures

Open H55 PDB
Conformation SENW = 4-IP
3FNX = 4-BP
4-halophenol 3ENY = 4-CP
bound in the 3FENZ = 4-FP

distal pocket

M86

Spectroscopic and structural studies of DHP
support binding of 4-halophenols in the pocket

LaCount et al. (2000) J. Biol. Chem. 275, 18712  Nienhaus et al. J. Phys. Chem. B 2006, 110, 13264
Smirnova et al. JACS 2008, 130, 2128 Nienhaus et al. Biochemistry, 2008, 47, 12985



IENW = 4-|P ‘
3FNX = 4-BP
3FNY = 4-CP
3FNZ = 4-FP
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Raman probe of binding in°
the internal binding site

Different modes of binding are
observed in the core size marker
modes of the resonance Raman
spectrum.
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g non-classical competitive inhibition
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Hypothesis: Autooxidation is not
physiologically relevant for DHP

Oxidized forms of DHP may form during a catalytic
cycle. Reductase may be needed for this reason,
but not because of (auto)oxidation by O..

There is no need for complicated regulation of the
distal pocket such as observed in most hemoglobins
or myoglobins.
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Thompson et al. Biophys. J. (2010), 99, 1586-1599
De Serrano and Franzen Peptide Science ASAP




Xe-bound X-ray
Crystal Structure

Overlay of
Xe binding site
and

Inhibitor position
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Time-resolved X-ray crystallography
confirms the enlarged distal pocket




Time-resolved X-ray crystallography
confirms the enlarged distal pocket

P,

3 His

Zhao et al. Biochemistry (2013) 52, 2427



Initially CO moves to the primary
Xe binding site

[N
=

Proximal
Histidine

The single site for of diatomic ligand binding in DHP can be
contrasted with the more complex series of sites in Sperm Whale
myoglobin, studied by many groups using time-resolved X-ray.



CO escapes from the distal pocket
In the crystalline form
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Distal pocket of DHP permits
Free entry and exit of CO (and O,)

The CO ligand moves immediately to the Xe binding
site in DHP. This is NOT the same as the “docking”
site seen in other time-resolved X-ray structures.

The docking site is closer to the heme Fe

CO must push other amino acids away and is
trapped by them.

CO does not escape from the protein, but moves
to Xe sites and then recombines.



Hypothesis : Substrate binding can trigger

switching between functions

Promiscuity in DHP may be related to the diversity
of brominated (and chlorinated) molecules in the
environment.

The different fates of molecules depends on specific
chemistry. For example, 4-bromophenol radicals

Lead

to polymerization and therefore they do not form

(4-BP is an inhibitor). 2,4,6-tribromophenol radicals

Leao

to quinone formation, which is favorable so this

Chemistry occurs. Oxidation of 2,4-dibromophenol
By O-atom transfer is favorable. It should also bind.
We can measure competitive binding equilibria.



Internal substrate binding site

2.4.6-TBP infused
With 20% MeOH

PDB: 4FH6, 4FH7



Comparison of substrate and
iInhibitor binding sites
Substrate Inhibitor
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