Application of DFT Calculations to Self-Assembled Monolayers on Au(111)

Computational modeling of the surface of Au(111)

- Structure of the ($\sqrt{3} \times \sqrt{3} R30^\circ$) lattice
- Reconstruction of the Au(111) layer
- Studies of c(4x2) superlattice
- Mechanism of adlayer formation
- Modeling DNA adlayers
- Surface attachment of proteins
- Surface attachment of boronic acid biosensors

Top view of the Au(111) Surface

Face-centered cubic lattice is ABC

Face-centered cubic lattice is ABC

Binding sites on the 111 surface

Hexagonal unit cells on the 111 surface

(√3 x √3 R30°)

Orthorhombic unit cells on the 111 surface

Unit cells on the 111 surface top binding site

Unit cells on the 111 surface fcc binding site

Unit cells on the 111 surface bridge binding site

Unit cells on the 111 surface hcp binding site

Comparing different chain lengths on Au(111)

- Geometry optimize surface adlayer (fixed Au)
- Create models for fcc, top and bridge
- Calculate potential energy surface

Methane thiol

Ethane thiol

14

The difference between methane and ethane thiol

Ethane thiol Fcc bridge site Two au atoms

Methane thiol Fcc hollow site Three Au atoms

Comparing different chain lengths on Au(111)

- Geometry optimize surface adlayer (fixed Au)
- Create models for fcc, top and bridge
- Calculate potential energy surface

Binding sites on Au(111)

Unit cell consists of 18 Au atoms and two adsorbate molecules.

Binding sites on Au(111)

This calculation can be made tractable using effective core potentials (ecp).

Binding sites on Au(111)

The Au atoms can be fixed in the optimization to save time.

Towards a chemical model of the surface

Au(111)

DFT calculations of self-assembled monolayers

Methane thiol on Au(111)

Model energetics and structure...

Ethane thiol on Au(111)

...as a function of chain length.

Hexane thiol on Au(111)

Distance (Å)

Methane thiol is anomalous

Ethane thiol follows the trend

Ammonia adlayer

Ammonia adlayer

"Up facing" geometry used Top binding site is favored Binding is three times weaker than for alkane thiols

Pyridine adlayer

Top binding site is favored. Binding is three times weaker than for alkane thiols.

Test of the layer effect of Au(111)

The same results are obtained for 3 layers and 6 layers

Structural Results

• Methane thiol on a fixed Au(111) surface shows a preference for the fcc hollow site binding to three Au atoms.

• Ethane thiol and all higher alkane Thiols bind instead at the fcc bridge site to two Au atoms.

• Ethane thiol is the least expensive model for larger calculations.

• The top site is favored for ammonia and pyridine.

Computational modeling of the surface of Au(111)

- Structure of the ($\sqrt{3} \times \sqrt{3} R30^\circ$) lattice
- Reconstruction of the Au(111) layer
- Studies of c(4x2) superlattice
- Mechanism of adlayer formation
- Modeling DNA adlayers
- Surface attachment of proteins
- Surface attachment of boronic acid biosensors

Ethane thiol adlayer reconstruction Model 1 Model 2

v X

Z

Reconstruction results

Methane thiol causes a rearrangement of Au atoms to create a fcc bridge binding site. The difference in structure appears to be a subtle undulation in the Au atoms while maintaining their overall hexagonal packing. The net effect is create a less dense surface layer of the Au atoms. The Au adlayer is 1 Å higher than for the fixed gold calculation in the same unit cell. These conclusions also hold for ethane and hexane thiol.

Computational modeling of the surface of Au(111)

- Structure of the ($\sqrt{3} \times \sqrt{3} R30^\circ$) lattice
- Reconstruction of the Au(111) layer
- Studies of c(4x2) superlattice
- Mechanism of adlayer formation
- Modeling DNA adlayers
- Surface attachment of proteins
- Surface attachment of boronic acid biosensors

Computational modeling of the surface of Au(111)

- Structure of the ($\sqrt{3} \times \sqrt{3} R30^\circ$) lattice
- Reconstruction of the Au(111) layer
- Studies of c(4x2) superlattice
- Mechanism of adlayer formation
- Modeling DNA adlayers
- Surface attachment of proteins
- Surface attachment of boronic acid biosensors

Possible mechanisms for formation of alkane thiol self-assembled monolayers

Where do the hydrogens go?

Propane mercaptan on Au(111)

Binding strength is of the same order as that for ammonia or pyridine. However, the fcc bridge site is favored as observed for thiols.

Formation of H₂ on the Au(111) surface

Mercaptan Reactant	Binding energy	Thiol Product	Binding energy	Reaction energy
2 MethylSH	-1611.8	2 MethaneS + H ₂	-1581.3	30.5
2 EthylSH	-4154.4	2 EthaneS + H ₂	-4136.3	18.1
2 PropyISH	-6653.1	2 PropaneS + H ₂	-6723.1	-70.0
2 ButyISH	-9325.7	2 ButaneS + H_2	-9388.1	-62.4
2 PentyISH	-11847.2	2 PentaneS + H ₂	-11917.2	-70.0
2 HexvISH	-14512.0	2 HexaneS + H ₂	-14579.7	-67.7

Disulfide binding energy to the Au(111) surface

Disulfide bond strength

Propane disulfide and propane thiol on Au(111)

-6239.0 kJ/mol

-6191.0 kJ/mol

Computational modeling of the surface of Au(111)

- Structure of the ($\sqrt{3} \times \sqrt{3} R30^\circ$) lattice
- Reconstruction of the Au(111) layer
- Studies of c(4x2) superlattice
- Mechanism of adlayer formation
- Modeling DNA adlayers
- Surface attachment of proteins
- Surface attachment of boronic acid biosensors