Hydrogen molecule ion wave functions

We use this example because it can be solved exactly. The spatial wavefunction on each of two H atoms forms linear combinations:

The atomic wave functions form linear combinations to make molecular orbital wave functions.

$$
\Psi_{ \pm}=1 \mathrm{~s}_{\mathrm{A}} \pm 1 \mathrm{~s}_{\mathrm{B}}
$$

The hamiltonian for $\mathrm{H}_{2}{ }^{+}$

The hamiltonian for $\mathrm{H}_{2}{ }^{+}$is:

$$
H=-\frac{\hbar^{2}}{2 M}\left(\nabla_{\mathrm{A}}^{2}+\nabla_{\mathrm{B}}^{2}\right)-\frac{\hbar^{2}}{2 m_{e}} \nabla_{\mathrm{e}}^{2}-\frac{\mathrm{e}^{2}}{4 \pi \varepsilon_{0} \mathrm{r}_{\mathrm{A}}}-\frac{\mathrm{e}^{2}}{4 \pi \varepsilon_{0} \mathrm{r}_{\mathrm{B}}}+\frac{\mathrm{e}^{2}}{4 \pi \varepsilon_{0} \mathrm{R}}
$$

Given above are the kinetic energy operators for the nuclei A and B and for the electron e. Also there are three potential energy terms, two attractive potential terms between the nuclei (A and B) and the electron and one repulsive term involving A and B only. In order to proceed we will:
-Separate nuclear and electronic motion (BornOppenheimer approximation)
-Convert to atomic units.

Separation of electronic and nuclear motion

The Born-Oppenheimer approximation states that electronic motion is much more rapid than nuclear motion and therefore the electrons see a static nuclear configuration. This means:

- We can separate the nuclear kinetic energy terms in a separate Schrödinger equation.

$$
H_{\text {nuclear }}=-\frac{\hbar^{2}}{2 M}\left(\nabla_{\mathrm{A}}^{2}+\nabla_{\mathrm{B}}^{2}\right)
$$

- We can solve the electronic Schrödinger equation at fixed values of R. For each value of R we will obtain a set of energy values for the various states of $\mathrm{H}_{2}{ }^{+}$. The plot of these energy values against R produces a potential energy surface for the molecule.

Atomic Units

After application of the B-O approximation the electronic hamiltonian becomes:

$$
H=-\frac{\hbar^{2}}{2 m_{e}} \nabla_{\mathrm{e}}^{2}-\frac{\mathrm{e}^{2}}{4 \pi \varepsilon_{0} \mathrm{r}_{\mathrm{A}}}-\frac{\mathrm{e}^{2}}{4 \pi \varepsilon_{0} \mathrm{r}_{\mathrm{B}}}+\frac{\mathrm{e}^{2}}{4 \pi \varepsilon_{0} \mathrm{R}}
$$

In atomic energy units we set

$$
\hbar=1 ; e=1 ; m_{e}=1 ; 4 \pi \varepsilon_{0}=1
$$

in the above equations. The atomic unit of distance is the Bohr radius $\mathrm{a}_{0}=0.529 \AA$. The atomic unit of energy is the Hartree which is equal to the twice the ionization energy of the hydrogen atom. The Hartree is defined as

$$
E_{h}=\frac{\mathrm{e}^{2}}{4 \pi \varepsilon_{0} \mathrm{a}_{0}}
$$

In atomic units the hamiltonian takes on a simple form.

$$
H=-\frac{1}{2} \nabla_{\mathrm{e}}^{2}-\frac{1}{\mathrm{r}_{\mathrm{A}}}-\frac{1}{\mathrm{r}_{\mathrm{B}}}+\frac{1}{\mathrm{R}}
$$

where r_{A} and r_{B} are the distances of the electron from nucleus A and B, respectively. The Schrödinger equation for $\mathrm{H}_{2}{ }^{+}$is:

$$
H \Psi\left(r_{A}, r_{B}: R\right)=E \Psi\left(r_{A}, r_{B}: R\right)
$$

We can use linear combinations of atomic wavefunctions for our molecular wavefunctions.

$$
\Psi_{ \pm}=\mathrm{c}_{1} \mathrm{~A} \pm \mathrm{c}_{2} \mathrm{~B}
$$

where A and B represent the $1 \mathrm{~s}_{\mathrm{A}}$ and $1 \mathrm{~s}_{\mathrm{B}}$ wave functions, respectively. Given that the nuclei are identical we must have $\left|c_{1}\right|=c_{2}$. Thus, our linear combination becomes:
for the bonding and

$$
\Psi_{+}=\mathrm{A}+\mathrm{B}
$$

$$
\Psi_{-}=\mathrm{A}-\mathrm{B}
$$

For the anti-bonding orbital.

The hamiltonian for $\mathrm{H}_{2}{ }^{+}$

The potential involves three particles, one electrons and two protons. In atomic units it is given by

$$
V=-\left(\frac{1}{r_{A}}+\frac{1}{r_{B}}\right)+\frac{1}{R}
$$

The hamiltonian includes the kinetic energy terms for the electron only since the Born-Oppenheimer approximation allows separation of nuclear and electronic motion. The internuclear distance R is fixed and the nuclear kinetic energy is zero.

$$
H=-\frac{1}{2} \nabla^{2}+V
$$

Setting up the energy calculation for $\mathrm{H}_{2}{ }^{+}$

The average energy is obtained by evaluating the expectation value:

$$
E^{\prime}=\frac{\int \Psi^{*} H \Psi d \tau}{\int \Psi^{*} \Psi d \tau}
$$

The denominator gives the required normalization.

$$
\begin{aligned}
& \int \Psi^{*} \Psi d \tau=\int\left(1 s_{A}^{*}+1 s_{B}^{*}\right)\left(1 s_{A}+1 s_{B}\right) d \tau \\
& \quad=\int 1 s_{A}^{*} 1 s_{A} d \tau+\int 1 s_{A}^{*} 1 s_{B} d \tau+\int 1 s_{B}^{*} 1 s_{B} d \tau+\int 1 s_{B}^{*} 1 s_{A} d \tau \\
& =1+S+1+S, \text { where } \int 1 s_{A}^{*} 1 s_{A} d \tau=1 \text { and } \int 1 s_{A}^{*} 1 s_{B} d \tau=S
\end{aligned}
$$

Normalized LCAO wave functions

The LCAO wave functions for the $\mathrm{H}_{2}{ }^{+}$molecule ion are

$$
\Psi_{+}=\frac{1}{\sqrt{2(1+S)}}\left(1 s_{A}+1 s_{B}\right)
$$

and

$$
\Psi_{-}=\frac{1}{\sqrt{2(1-S)}}\left(1 s_{A}-1 s_{B}\right)
$$

These wave functions are orthogonal and normalized.

Energy levels in $\mathrm{H}_{2}{ }^{+}$

Explicit substitution of the hamiltonian gives

$$
\begin{array}{rl}
E=\int \Psi^{*} & H \Psi d \tau=\int \Psi^{*}\left(-\frac{1}{2} \nabla^{2}-\frac{1}{r_{A}}-\frac{1}{r_{B}}+\frac{1}{R}\right) \Psi d \tau \\
& =\int 1 s_{A}^{*}\left(-\frac{1}{2} \nabla^{2}-\frac{1}{r_{A}}-\frac{1}{r_{B}}+\frac{1}{R}\right) 1 s_{A} d \tau \\
& +\int 1 s_{A}^{*}\left(-\frac{1}{2} \nabla^{2}-\frac{1}{r_{A}}-\frac{1}{r_{B}}+\frac{1}{R}\right) 1 s_{B} d \tau \\
& +\int 1 s_{B}^{*}\left(-\frac{1}{2} \nabla^{2}-\frac{1}{r_{A}}-\frac{1}{r_{B}}+\frac{1}{R}\right) 1 s_{B} d \tau \\
& +\int 1 s_{B}^{*}\left(-\frac{1}{2} \nabla^{2}-\frac{1}{r_{A}}-\frac{1}{r_{B}}+\frac{1}{R}\right) 1 s_{A} d \tau
\end{array}
$$

Energy levels in $\mathrm{H}_{2}{ }^{+}$

$=\int 1 s_{A}^{*}\left(E_{1 s}-\frac{1}{r_{B}}+\frac{1}{R}\right) 1 s_{A} d \tau+\int 1 s_{A}^{*}\left(E_{1 s}-\frac{1}{r_{B}}+\frac{1}{R}\right) 1 s_{B} d \tau$
$+\int 1 s_{B}^{*}\left(E_{15} \frac{1}{r_{A}}+\frac{1}{R}\right) 1 s_{B} d \tau+\int 1 s_{B}^{*}\left(E_{15} \frac{1}{r_{B}}+\frac{1}{R}\right) 1 s_{A} d \tau$
Since

$$
\begin{aligned}
& \left(-\frac{1}{2} \nabla^{2}-\frac{1}{r_{A}}\right) 1 s_{A}=E_{1 s} 1 s_{A} \\
& \left(-\frac{1}{2} \nabla^{2}-\frac{1}{r_{B}}\right) 1 s_{B}=E_{1 s} 1 s_{B}
\end{aligned}
$$

These are just hydrogen atom Schrödinger equations

Energy levels in $\mathrm{H}_{2}{ }^{+}$

$$
\begin{gathered}
=E_{1 s}(1+S)+\int 1 s_{A}^{*}\left(-\frac{1}{r_{B}}+\frac{1}{R}\right) 1 s_{A} d \tau+\int 1 s_{A}^{*}\left(-\frac{1}{r_{B}}+\frac{1}{R}\right) 1 s_{B} d \tau \\
+E_{1 s}(1+S)+\int 1 s_{B}^{*}\left(-\frac{1}{r_{A}}+\frac{1}{R}\right) 1 s_{B} d \tau+\int 1 s_{B}^{*}\left(-\frac{1}{r_{B}}+\frac{1}{R}\right) 1 s_{A} d \tau
\end{gathered}
$$

To further evaluate these two-center integrals we define the Coulomb integral

$$
J=\int 1 s_{A}^{*}\left(-\frac{1}{\left.r_{B}+\frac{1}{R}\right)} 1 s_{A} d \tau=-\int \frac{1 s_{A}^{*} 1 s_{A}}{r_{B}} d \tau+\frac{1}{\mathrm{R}}\right.
$$

and the exchange integral

$$
K=\int 1 s_{B}^{*}\left(-\frac{1}{r_{B}}+\frac{1}{R}\right) 1 s_{A} d \tau=-\int \frac{1 s_{B}^{*} 1 s_{A}}{r_{B}} d \tau+\frac{\mathrm{S}}{\mathrm{R}}
$$

Energy levels in $\mathrm{H}_{2}{ }^{+}$

$$
\begin{gathered}
E_{+}^{\prime}=\frac{\int \Psi_{+}{ }^{*} H \Psi_{+} d \tau}{\int \Psi_{+}{ }^{*} \Psi_{+} d \tau}=\frac{E_{1 s} 2(1+S)+2(J+K)}{2(1+S)} \\
E_{+}^{\prime}=E_{1 s}+\frac{J+K}{1+S} \\
E_{-}^{\prime}=\frac{\int \Psi_{-}{ }^{*} H \Psi_{-} d \tau}{\int \Psi_{-}{ }^{*} \Psi_{-} d \tau}=\frac{E_{15} 2(1-S)+2(J-K)}{2(1-S)} \\
E_{-}^{\prime}=E_{1 s}+\frac{J-K}{1-S}
\end{gathered}
$$

Diagram of $\mathrm{H}_{2}{ }^{+}$energy levels

$$
\frac{J-K}{1-S}
$$

$$
\frac{J+K}{1+S}
$$

Note that the anti-bonding level is more destabilizing than the bonding level is stabilizing.

Bonding and anti-bonding orbitals

$$
\Psi_{+}=\frac{1}{\sqrt{2(1+S)}}\left(1 s_{A}+1 s_{B}\right) \quad \Psi_{-}=\frac{1}{\sqrt{2(1-S)}}\left(1 s_{A}-1 s_{B}\right)
$$

Significance of the overlap integral

The wave functions $1 \mathrm{~s}_{\mathrm{A}}$ and $1 \mathrm{~s}_{\mathrm{B}}$ are not orthogonal since they are centered on different nuclei. The overlap integral S is a function of the internuclear distance.

Distance dependence of terms that make up the energy

The energy, overlap and other integrals that describe the system are all a function of distance. $E(R)$ is the distance dependent energy (surface) $S(R)$ is the distance dependent overlap
$J(R)$ is the distance dependent Coulomb integral $K(R)$ is the distance dependent exchange integral

Elliptical coordinate system

In order to solve the $\mathrm{H}_{2}{ }^{+}$ion analytically we can use integration in elliptical coordinates. This is shown schematically below.

To transform the coordinates we use the following

$$
\lambda=\frac{\mathbf{r}_{A}+\mathbf{r}_{B}}{\mathbf{R}}, \boldsymbol{\mu}=\frac{\mathbf{r}_{A}-\mathbf{r}_{\mathrm{B}}}{\mathbf{R}}
$$

within the following limits

$$
1 \leq \lambda \leq \infty,-1 \leq \mu \leq 1,0 \leq \phi \leq 2 \pi
$$

Wave functions and variables

If the radius is given in units of Bohr radii $\left(\mathrm{a}_{0}=0.529 \AA \AA\right)$ the hydrogen atom 1s wave function is:
for atom A $f_{A}=\frac{1}{\sqrt{\pi}} e^{-r_{A}} \quad$ and $\quad f_{B}=\frac{1}{\sqrt{\pi}} e^{-r_{B}}$
for atom B in spherical polar coordinates. To solve the following integrals, we can solve for r_{A} and r_{B} in terms of λ and μ.
$r_{A}=R \lambda-r_{B}, r_{B}=r_{A}-R \mu$
$r_{A}=R \lambda-r_{A}+R \mu$
$2 r_{A}=R(\lambda+\mu), 2 r_{B}=R(\lambda-\mu)$
The volume element is

$$
d \tau=\frac{R^{3}}{8}\left(\lambda^{2}-\mu^{2}\right) d \lambda d \mu d \phi
$$

Normalization

The normalization constant in elliptical coordinates is determined from the integral:

$$
1=N^{2} \int f_{A} f_{A} d \tau=\frac{N^{2}}{\pi} \int e^{-2 r_{A}} d \tau
$$

Since $2 r_{A}=(\lambda+\mu) R$ we have

$$
1=\frac{N^{2} R^{3}}{8 \pi} \int_{0}^{2 \pi} d \phi\left(\int_{-1}^{1} e^{-R \mu} d \mu \int_{1}^{\infty} e^{-R \lambda} \lambda^{2} d \lambda-\int_{-1}^{1} e^{-R \mu} \mu^{2} d \mu \int_{1}^{\infty} e^{-R \lambda} d \lambda\right)
$$

The result is:

$$
1=N^{2}(2 \pi)\left(\frac{4}{R^{3}}\right)
$$

so that,

$$
N=\sqrt{\frac{R^{3}}{8 \pi}}
$$

The overlap integral S(R)

The overlap integral is distance dependent. In the elliptical coordinate system it can be solved for an analytical expression in terms of the internuclear distance, R. The wave functions are normalized. The overlap integral S is
where

$$
S(R)=\frac{1}{\pi} \int f_{A} f_{B} d \tau
$$

$$
\int f_{A} f_{B} d \tau=\int e^{-r_{A}} e^{-r_{B}} d \tau=\int e^{-\left(r_{A}+r_{B}\right)} d \tau
$$

Using the above definitions this integral can be recast as

$$
S(R)=\frac{R^{3}}{8 \pi} \int_{0}^{2 \pi} d \phi\left(\int_{-1}^{1} d \mu \int_{1}^{\infty} e^{-R \lambda} \lambda^{2} d \lambda-\int_{-1}^{1} \mu^{2} d \mu \int_{1}^{\infty} e^{-R \lambda} d \lambda\right)
$$

Let $u=-R \lambda$ then $d u=-R d \lambda$ and $d \lambda=-d u / R$.

$$
S(R)=\frac{R^{3}}{8 \pi} 2 \pi\left(-\frac{2}{R^{3}} \int_{-R}^{-\infty} e^{u} u^{2} d u-\frac{2}{3 R} \int_{-R}^{-\infty} e^{u} d u\right)
$$

The second term integrates to $-e^{-R}$, but the first requires integration by parts.

$$
\begin{gathered}
\int e^{u} u^{2} d u=e^{u} u^{2}-2 \int e^{u} u d u \\
=e^{u} u^{2}-2\left(e^{u} u-e^{u}\right) \\
=e^{u}\left(u^{2}-2 u+2\right)
\end{gathered}
$$

The integral is evaluated at minus infinity (it is zero there) and at -R .

$$
S(R)=e^{-R}\left(\frac{R^{2}}{3}+R+1\right)
$$

The Coulomb integral J(R)

The Coulomb integral is:

$$
I=-\int \frac{1 s_{B} 1 s_{B}}{r_{A}} d \tau+\int \frac{1 s_{B} 1 s_{B}}{R} d \tau
$$

which can be resolved to

$$
\begin{aligned}
J(R) & =-\frac{1}{\pi} \int \frac{e^{-r_{B}} e^{-r_{B}}}{r_{A}} d \tau+\frac{1}{\pi} \int \frac{e^{-r_{B}} e^{-r_{B}}}{R} d \tau \\
& =-\frac{1}{\pi} \int \frac{e^{-2 r_{B}}}{r_{A}} d \tau+\frac{1}{R}
\end{aligned}
$$

and then cast into the elliptical coordinate system
$-\frac{1}{\pi} \int \frac{e^{-2 r_{B}}}{r_{A}} d \tau=-\frac{1}{\pi} \int \frac{2 e^{-R(\lambda-\mu)}}{R(\lambda+\mu)} \frac{R^{3}}{8}\left(\lambda^{2}-\mu^{2}\right) d \lambda d \mu d \phi$

The Coulomb integral J(R)

Recognizing that $\left(\lambda^{2}-\mu^{2}\right)=(\lambda+\mu)(\lambda-\mu)$ we can rewrite this integral as.
$-\frac{R^{2}}{4 \pi} \int_{0}^{2 \pi} d \phi \int e^{-R(\lambda-\mu)}(\lambda-\mu) d \lambda d \mu$
which is expanded to

$$
-\frac{R^{2}}{2}\left(\int_{-1}^{1} e^{R \mu} d \mu \int_{1}^{\infty} e^{-R \lambda} \lambda d \lambda-\int_{-1}^{1} e^{R \mu} \mu d \mu \int_{1}^{\infty} e^{-R \lambda} d \lambda\right)
$$

Using the fact that integration by parts yields

$$
\int e^{u} u d u=e^{u} u-\int e^{u} d u=e^{u}(u-1)
$$

The integrals evaluate to

$$
\int_{-1}^{1} e^{R \mu} d \mu=-\frac{1}{R} \int_{-R}^{R} e^{u} d u=-\frac{e^{R}-e^{-R}}{R}
$$

$$
\int_{1}^{\infty} e^{-R \lambda} \lambda d \lambda=\frac{1}{R^{2}} \int_{-R}^{-\infty} e^{u} u d u=e^{-R}\left(1+\frac{1}{R}\right)
$$

$$
\int_{-1}^{1} e^{R \mu} \mu d \mu=\frac{1}{R^{2}} \int_{-R}^{R} e^{u} u d u=\frac{e^{R}(R-1)-e^{-R}(R+1)}{R^{2}}
$$

$$
\int_{1}^{\infty} e^{-R \lambda} d \lambda=-\frac{1}{R} \int_{-R}^{-\infty} e^{u} d u=\frac{e^{-R}}{R}
$$

The Coulomb integral J(R)

Therefore

$$
J(R)=e^{-2 R}\left(1+\frac{1}{R}\right)
$$

The Exchange integral $K(R)$

The exchange integral can likewise be evaluated.

$$
\begin{aligned}
& K=-\frac{1}{\pi} \int \frac{1 s_{A} 1 s_{B}}{r_{A}} d \tau+\frac{1}{\pi} \int \frac{1 s_{A} 1 s_{B}}{R} d \tau \\
& \begin{aligned}
& K(R)=-\frac{1}{\pi} \int \frac{e^{-r_{A}} e^{-r_{B}}}{r_{A}} d \tau \\
&=-\frac{1}{\pi} \int \frac{e^{-\left(r_{A}+r_{B}\right)}}{r_{A}} d \tau+\frac{S(R)}{R}+\frac{1}{\pi} \int \frac{e^{-r_{A}} e^{-r_{B}}}{R} d \tau \\
&-\frac{1}{\pi} \int \frac{e^{-\left(r_{A}+r_{B}\right)}}{r_{A}} d \tau=-\frac{2}{R \pi} \int \frac{e^{-R \lambda}}{(\lambda+\mu)} \frac{R^{3}}{8}\left(\lambda^{2}-\mu^{2}\right) d \lambda d \mu d \phi \\
&=-\frac{R^{2}}{4 \pi} \int e^{-R \lambda}(\lambda-\mu) d \lambda d \mu d \phi
\end{aligned}
\end{aligned}
$$

The Exchange integral K(R)

The integral that comprises the first term in $K(R)$ is

$$
-\frac{R^{2}}{4 \pi} \int_{0}^{2 \pi} d \phi\left(\int_{-1}^{1} d \mu \int_{1}^{\infty} e^{-R \lambda} \lambda d \lambda-\int_{-1}^{1} \mu d \mu \int_{1}^{\infty} e^{-R \lambda} d \lambda\right)
$$

Making substitutions as above

$$
-\frac{R^{2}}{2}\left(\frac{2}{R^{2}} \int_{-R}^{-\infty} e^{u} u d u\right)=-e^{-R}(R+1)
$$

which, when substituted into the initial expression for K gives

$$
K(R)=\frac{S(R)}{R}-e^{-R}(R+1)
$$

Potential energy surface for $\mathrm{H}_{2}{ }^{+}$

Using elliptical integrals that S, J, and K integrals can be solved analytically to yield the following PES.

$$
\begin{gathered}
S(R)=e^{-R}\left(1+R+\frac{R^{2}}{3}\right) \\
J(R)=e^{-2 R}\left(1+\frac{1}{R}\right) \\
K(R)=\frac{S}{R}-e^{-R}(1+R)
\end{gathered}
$$

