Properties of a group

- 1. There must exist an identity operator which commutes with all other operators.
- 2. The product of any two operators must also be a member of the group.
- 3. Multiplication is associative, but not necessarily commutative.
- 4. There must exist an inverse (or reciprocal) for each element in the group.

Corollaries:

- 1. The identity operator is its own inverse.
- 2. A similarity transform is an operation:

$$Z^{-1}XZ = Y$$

Point groups

We can assemble the operations of the group into a multiplication table. This group of operations satisifes all of the requirements of a mathematical group and is called a point group. Point groups get their name from the fact that at least one point in space remains unchanged for all operations in the group.

 C_1 is a point group whose only symmetry operation is E, the identity. In other words there is no symmetry.

 C_s is a point group whose symmetry operations are E and σ . The symmetry is restricted to a mirror plane.

Point group examples C₁ and Cs

We can assemble the operations of the group into a multiplication table. This group of operations satisifes all of the requirements of a mathematical group and is called a point group. Point groups get their name from the fact that at least one point in space remains unchanged for all operations in the group.

 C_1 is a point group whose only symmetry operation is E, the identity. In other words there is no symmetry.

 C_s is a point group whose symmetry operations are E and σ . The symmetry is restricted to a mirror plane.

C ₁	Symmetry elements for the group E	Spectroscopy active component			
		Microwave	IR	Raman	
А	1	(none)			

The symmetry operation E exists for all groups.

A vertical reflection plane σ_v is shown. There are three such planes in molecules in the C_{3v} point group.

There are two possible Rotations about a 3-fold axis. The first is a 120° rotation and the second is a 240° rotation.

The group consists of these three symmetry operations. The order of the group is h=6. There are three irreducible representations in the point group C_{3v} , which are given in the character table below.

C _{3v}		Symmetry elements for the group			Spectroscopy active component		
		Е	2C3	$3s_V$	Microwave	IR	Raman
Symmetry label	A ₁	1	1	1		z	$x^2 + y^2$, z^2
	A ₂	1	1	-1	Rz		
	Е	2	-1	0	R_{y},R_{X}	х, у	$(x^2 + y^2, xy) (xz, yz)$