Properties of a group

1. There must exist an identity operator which commutes with all other operators.
2. The product of any two operators must also be a member of the group.
3. Multiplication is associative, but not necessarily commutative.
4. There must exist an inverse (or reciprocal) for each element in the group.

Corollaries:

1. The identity operator is its own inverse.
2. A similarity transform is an operation:

$$
Z^{-1} X Z=Y
$$

Point groups

We can assemble the operations of the group into a multiplication table. This group of operations satisifes all of the requirements of a mathematical group and is called a point group. Point groups get their name from the fact that at least one point in space remains unchanged for all operations in the group.
C_{1} is a point group whose only symmetry operation is E, the identity. In other words there is no symmetry.
C_{s} is a point group whose symmetry operations are E and σ. The symmetry is restricted to a mirror plane.

Point group examples C_{1} and Cs

We can assemble the operations of the group into a multiplication table. This group of operations satisifes all of the requirements of a mathematical group and is called a point group. Point groups get their name from the fact that at least one point in space remains unchanged for all operations in the group.
C_{1} is a point group whose only symmetry operation is E, the identity. In other words there is no symmetry.
C_{s} is a point group whose symmetry operations are E and σ. The symmetry is restricted to a mirror plane.

Point group examples C_{1} and C_{s}

C_{1}

E only
E and σ

Point group examples C_{1} and C_{s}

C_{1}

E only

Point group example: Ammonia $\mathrm{C}_{3 \mathrm{v}}$

The symmetry operation E
 exists for all groups.

Point group example: Ammonia $\mathrm{C}_{3 \mathrm{v}}$

A vertical reflection plane σ_{v} is shown. There are three such planes in molecules in the $\mathrm{C}_{3 v}$ point group.

Point group example: Ammonia $\mathrm{C}_{3 \mathrm{v}}$

There are two possible Rotations about a 3 -fold axis. The first is a 120° rotation and the second is a 240° rotation.

Point group example: Ammonia $\mathrm{C}_{3 \mathrm{v}}$

The group consists of these three symmetry operations. The order of the group is $\mathrm{h}=6$. There are three irreducible representations in the point group $\mathrm{C}_{3 v}$, which are given in the character table below.

