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In the Laboratory

Chemometrics is a teaching focus gaining increasing im-
portance in the undergraduate laboratory curriculum (1–7). 
Multivariate statistical data evaluation techniques are particu-
larly useful if simple linear regression methods are insufficient 
in analyzing complex and strongly interrelated data sets. For 
instance, multivariate data analysis can be applied if multiple 
constituents are contained in one sample resulting in convoluted 
analytical signatures (e.g., overlapping peaks in IR or Raman 
spectroscopy). Modern instrumental analysis enables the acquisi-
tion of enormous amounts of data, which requires smart data 
reduction or recognition of the data sets providing the most use-
ful analytical information. Consequently, multivariate analysis 
methods are nowadays broadly implemented in academic and 
industrial environments for solving complex qualification or 
quantification problems.

Raman spectroscopy is considered among the most im-
portant nondestructive routine optical analysis tools providing 
molecule specific vibrational information. A main advantage 
over conventional IR spectroscopy is its utility for in situ mea-
surements in aqueous systems, as water is considered largely 
transparent to Raman techniques. While both Raman and IR 
spectroscopy probe molecular vibrations, the mechanism of ob-
taining spectra is fundamentally different (i.e., direct absorption 
in IR versus scattering in Raman) along with different selection 
rules (i.e., IR-active versus Raman-active vibrations), thus fre-
quently providing complementary spectroscopic information. At 
present, most undergraduate teaching laboratories are equipped 
with Fourier transform infrared (FT-IR) spectrometers, whereas 
Raman spectroscopy is still not considered among the standard 
spectroscopic teaching tools in the undergraduate chemistry 
curriculum. However, comprehensive undergraduate education 
in modern instrumental analysis should include the effective use 
of the inherent advantages of this powerful technique.

Similar to FT-IR spectra, Raman spectra of mixtures are 
often complex in nature with increasingly overlapping vibra-
tional signatures as the compositional complexity of the sample 
increases. Multivariate data evaluation methods are capable 
of resolving qualification or quantification problems in com-
plex sample matrices. Hence, it is essential if not inevitable to 
combine these spectroscopic techniques with appropriate data 
analysis techniques, as recently reported in this Journal (2) and 
demonstrated for evaluating Raman spectra of sugar mixtures 
(8–11).

An experiment was developed and implemented for 
fourth-year undergraduate students majoring in chemistry. 
Students gain hands-on experience in Raman spectroscopy, and 
in a lecture accompanying this laboratory exercise students are 

provided with the theory of Raman spectroscopy. Furthermore, 
they are educated in the basic concepts, theory, and application 
of multivariate data analysis methods such as, for example, 
principal components analysis and regression (PCA∙PCR) (12). 
PCA/PCR calculations are performed in a two-step process: in 
the first step (PCA), principal components (eigenvectors) are 
extracted from the calibration spectra. The obtained scores are 
unique to each calibration spectrum and enable the reconstruc-
tion of each calibration spectrum from a common set of PCs and 
the corresponding set of scores associated with each spectrum. 
In the second step (PCR), the obtained scores are regressed back 
against the mass fractions that are known for each calibration 
sample. Consequently, for an unknown sample the mass fraction 
of the constituents is determined from the collected spectrum 
by first extracting the unique scores and subsequent regression 
against the matrix of known mass fractions. In addition, the 
students had access to interactive teaching software (Teach 
Me∙Data analysis, Springer–Verlag) that comprehensively illus-
trates the underlying concepts of eigenvector-based multivariate 
techniques such as PCA/PCR. 

The experiment is based on analyzing an unknown aqueous 
mixture of sugars containing fructose, galactose, and glucose. 
These analytes are nontoxic, environmentally safe, and low in 
cost. Adequate preparation of calibration standards for training 
the multivariate regression model is essential prior to perform-
ing this experiment (13) and has to satisfy the requirements of 
multivariate calibration techniques along with the demands 
for the experimental Raman spectroscopic measurement. The 
experiment is designed as a five-hour laboratory module. How-
ever, it can be adjusted to fit schedules with shorter (2–4 h) 
experimental modules.

Experiment

Preparation of Standard Solutions
d-(−)-Fructose, d-(+)-galactose, and d-(+)-glucose are 

ACS reagent grade and were purchased from Sigma–Aldrich 
(St. Louis, MO). Fourteen solutions with different sugar com-
positions were prepared by mixing three different sugars in a 
deionized water matrix (Table 1). Mass fractions of fructose 
and galactose range from 0 to 20% (m/m); the mass fraction of 
glucose ranges from 0 to 30% (m/m) in the standard samples. 
A major effort in preparing adequate calibration standards for 
PCR entails establishing a sufficiently large set of samples, while 
minimizing collinearity of the mass fraction variations within 
the calibration set. Hence, a mass fraction matrix (Table 1) was 
constructed ensuring minimum correlation among the mass 
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fraction variations of different sugars within the calibration 
set utilizing a minimum correlation table (Table 2), which was 
derived from a table of randomized trials (14, 15). A minimum 
correlation table is a generic approach to developing multivariate 
calibration schemes ensuring that confounding variations among 
components are minimized, thereby maximizing orthogonality 
for eigenvector-based data evaluation schemes (15). Practically, 
the mass fraction range of each component in the experiment 
was uniformly divided into 14 levels, as shown in Table 2. The 
minimum correlation table provides the level that should be 
used for each constituent during preparation of each standard. 
To verify the utility of the calibration set, standards 4 and 11 
were set aside as quasi-unknowns for testing the predictive ca-
pability of the established PCA∙PCR models derived from the 
remaining standard mixtures. PCA∙PCR requires a minimum 
number of calibration samples, which is determined by the 
classical design rule of at least 23 standards for three analytes at 
two mass fraction levels (16), while minimizing the correlation 
among the standards. During development of this experiment, 
it was experimentally determined that 12 standard mixtures 
were sufficient for establishing sufficiently robust PCR calibra-
tion models if there are no other interfering factors such as, for 
example, impurities of the samples or —in this specific case—
isomerization of sugars. The calibration solutions were prepared 
in sample vials and were then heated to 35 ºC using a sand bath 
for dissolving all sugars. Prior to Raman analysis, the samples 
were equilibrated to room temperature.

Raman Analysis of Sugar Solutions
Students recorded FT-Raman spectra utilizing a  

FT-IR∙Raman spectrometer (FRA106/S, Bruker Optics, Bil-
lerica, MA) equipped with a Nd:YAG excitation laser source 
emitting at 1064 nm and an indium–gallium–arsenide (In-
GaAs) detector. In principle, the experiments can be conducted 
with any Raman system providing the capability to record 
spectra of liquid-phase samples with sufficient signal-to-noise 
ratio and spectral resolution. However, the obtained predictive 
errors may vary from the data reported herein. The measure-
ments were performed in a 180° backscattering mode. The 
excitation laser power was set at 400 mW, and the excitation 
laser was focused onto a quartz cuvette (volume: 1.5 mL) with 
an optical path length of 5 mm. The cuvette was equipped with 
a reflecting mirror layer at the rear for enhanced efficiency. 
Spectra were collected at a spectral resolution of 2 cm–1 in the 
frequency range of 1600–200 cm–1; each spectrum represented 
an average of 32 scans.

Multivariate Data Analysis Using Raman Spectra

PCA/PCR calibration models were established using 
the PLS_Toolbox_3.5 software (Eigenvector Research Inc., 
Wenatchee, WA). The students recorded spectra from each of 
the twelve standards excluding standards 4 and 11, which were 
set aside as quasi-unknown samples for testing the performance 
of the established predictive model. Spectra of the 12 standard 
solutions were mean-centered prior to extracting the principal 
components (17). During this procedure, the mean spectrum 
(i.e., average spectrum) was calculated from all calibration 
spectra and then subtracted from each calibration spectrum. 
Thereby, variations common to all calibration samples were 
removed. Consequently, the remaining variations among the 

spectra appeared enhanced prior to extracting the remaining 
directions of largest variance within the data set represented by 
the principal components.

Hazards

There are no hazards involved in this experiment. All 
compounds used are nontoxic. Furthermore, the combined 
FT-IR∙Raman instrument is protected by an interlock from ac-
cidentally switching on the laser while the sample compartment 
is still open and vice versa.

Table 2. Minimum Correlation Table for the 14 Standards

Standard Fructose Galactose Glucose

1 1 3 9

2 2 12 14

3 3 10 6

4 4 5 10

5 5 14 1

6 6 4 12

7 7 11 5

8 8 9 4

9 9 2 11

10 10 7 8

11 11 8 13

12 12 6 3

13 13 13 7

14 14 1 2

Table 1. Mass Fraction of Standard Solutions

Standard Fructose  
(%)

Galactose 
(%)

Glucose 
(%)

Distilled Water 
(%)

1 0 2.86 17.14 80.00

2 1.43 17.14 30.00 51.43

3 2.86 14.29 10.71 72.14

4 4.29 5.71 19.29 70.71

5 5.71 20.00 0 84.29

6 7.14 4.29 25.71 62.86

7 8.57 15.71 8.57 67.14

8 11.43 12.86 6.43 69.29

9 12.86 1.43 23.57 62.14

10 14.29 8.57 15.00 62.14

11 15.71 11.43 27.86 45.00

12 17.14 7.14 4.29 71.43

13 18.57 18.57 12.86 50.00

14 20.00 0 2.14 77.86
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Figure  2.  Raman  spectrum  of  sugar mixture  in  aqueous  solution  
(fructose:galactose:glucose:H2O,  15.71:11.43:27.86:45.00, 
m/m/m/m).
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Figure 1. (A) Raman spectrum of solid glucose with selected peak 
assignment. (B) Overlay of Raman spectra of solid sugars: fructose, 
galactose, and glucose.
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Results

The Raman spectrum of pure solid glucose with peak 
labeling for selected major vibrations (18, 19) is shown in Fig-
ure 1A. A detailed peak assignment for all features is beyond 
the scope of this study, and the reader is referred to suitable 
references (18–21) for a more detailed peak assignment of the 
sugars studied in this experiment. An overlay of the Raman 
spectra for the pure sugars—glucose, galactose, and fructose—is 
shown in Figure 1B. A typical Raman spectrum for an aqueous 
solution of the sugar mixture (fructose:galactose:glucose:H2O, 
15.71:11.43:27.86:45.00, m/m/m/m) is shown in Figure 2. 
From these spectra it is immediately evident that significant 
overlap of the characteristic bands renders the quantification of 
each constituent impossible utilizing univariate statistics.

However, the developed multivariate PCA/PCR models 
exhibit the anticipated linear correlation between the predicted 
and the actual mass fraction values of each constituent contained 
in the standard mixtures. The developed model provides excel-
lent results for fructose with a goodness of the fit r 2 = 0.992 and 
a predictive accuracy with a root mean square error of calibration 
(RMSEC) of ~0.57. The model for galactose has a r 2 value of 
0.985 and a RMSEC of ~0.75; whereas the model for glucose 
is characterized by an r 2 value of 0.992 and a RMSEC of ~0.84. 
The superior fit for the fructose model derives from the fact that 
the spectrum of fructose (see Figure 1B) reveals much stronger 
Raman signatures in contrast to the spectra of galactose and 
glucose at the same measurement conditions. The obtained pre-
dicted mass fraction values along with the actual values for the 
quasi-unknown samples 4 and 11 are provided in Table 3. Given 
the weaker signals for glucose and galactose, relatively higher 
predictive errors are imminent. Furthermore, it is conceivable 
that the manual sample preparation and isomerization of the 
sugars add to the error.

In general, matrix interferences are a relevant factor possibly 
affecting the predictive accuracy. If interferences within un-
known samples are also present within the calibration samples, 
their effects are considered while establishing the calibration 
model. However, if interferences within the unknown sample 
are not present or not fully represented within the calibration 
data set, additional error is introduced into the predictive 
model, which has to be carefully considered when designing 
such experiments.

Increasing the number of averaged Raman spectra for each 
sample and increasing the number of standards for establishing 
the multivariate model are viable strategies for reducing the 
predictive error. However, these experimental settings would 
exceed the practically useful duration for educational laboratory 
experiments.
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Table 3. Comparison of Student Data for the Predicted and Actual Mass Fractions of Two Quasi-Unknowns

Sample
Fructose (%) Galactose (%) Glucose (%)

Predicted Actual Predicted Actual Predicted Actual

4 4.43 4.29 6.11 5.71 16.99 19.29

11 15.03 15.71 13.34 11.43 27.26 27.86

Average Relative Error 3.8 11.5 7.1
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