
Raman Spectroscopy 

1.0 General Considerations 
Raman spectroscopy is a light scattering experiment.  The Raman effect depends on a 

change in polarizability of the molecule as radiation interacts with the molecule.  The result is an 
inelastic light scattering process.  This means that there is an exchange of energy between the 
light and the vibrations of the molecule.  The frequency of the incident light is shifted and the 
molecule is left in an altered vibrational state.  This is shown in the Figure below.  The incident 
photon in this experiment is the v = 0 state and the scattering process leaves the molecule in the v 
= 1 state.  The process shown in the Figure is a resonant Raman process since the incident light is 
in resonance with an absorptive transition.  In this case the absorptive transition is Franck-
Condon active.  However, this FC activity is not required for a Raman process to be observed. 
 

 
Figure 1.  Illustration of the Raman effect. 

 
In a typical Raman experiment polarized light impinges on the sample.  The scattered light is 
detected using a spectrograph and an array detector to obtain a spectral region that will have 
peaks due to scattered intensity.  The wavenumber shift of the peaks relative to the incident laser 
corresponds to the wavenumber of Raman active vibrational modes of the molecule.  Figure 1 
shows this effect for a specific resonant excited state excitation.  If the laser wavenumber is not 
in resonance with an absorptive transition we can refer to the process as non-resonant Raman 
scattering.  The further from resonance one tunes the laser, the lower is the Raman scattered 
intensity.  Some books refer to “pre-resonant” Raman scattering when the laser frequency is near 
resonance.  As will be shown below, one can always refer to non-resonant scattering as off-
resonant (i.e. detuned from resonance).   
 
2.0 Experimental configuration 



 
Figure 2. Raman scattering apparatus. 

 
The scattered light can have two polarization components, parallel or perpendicular to the 
incident polarization.  These polarizations are detected using an analyzing polarizer in front of 
the entrance slit of the spectrograph.  The depolarization ratio is an important experimental 
observable and can give information that leads to vibrational mode assignment.  In resonance 
Raman the intensity of the Raman scattered signal depends on the displacement of the potential 
energy surface of the excited state and on the excited state dynamics.  This dependence is more 
complicated than the Franck-Condon factors in absorption spectroscopy. 
 
2.1 The definition of polarization 

For Z-polarized incident radiation we can detect scattered light using a 90 degree 
geometry shown below.  The incident light propagates along the X-direction and the scattered 
light along the Y-direction.  The uppercase letters here refer to the laboratory coordinate system. 
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Figure 3. Definition of Raman polarization. 

 
A polarization analyzer between the sample and the detector can be used to distinguish the 
polarization of scattered light.  If the polarization in the scattered light is the same as the incident 
we refer to this as I||, IZZ or Ipol. If the polarization in the scattered light is perpendicular to the 
incident we refer to this as I⊥, IXZ or Idep.  The depolarization ratio ρ is ρ = Idep/Ipol.   
 
2.2 Collection of the light 

Although we discuss the light scattered along Y it must be understood that light is in fact 
scattered into all directions.  The solid angle of a sphere is 4π stearadians and the solid angle 
collected is dΩ where dΩ < 4π.  The f-number of a lens is the ratio of the diameter, D of the lens 
divided by its focal length, F.  The two parameters needed to calculate the f-number are shown in 
Figure 4. 
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Figure 4. Illustration of collection optics for Raman scattered light. 

 
 



The solid angle for collection can be calculated by integration to angle 𝜃𝜃, which is determined by 
the ratio of the inverse tangent of the radius of the lens to the focal length. 
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            (2.1) 
Once this angle shown in Figure 4 has been calculated, the fraction of the light collected (relative 
to 4π stearadians) is given by, 
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            (2.2) 
For example, if the f-number of a collection lens is 1, as shown in Figure 4, D = F and we have θ 
= arctan(1/2) = 26.56o = 0.147π radians.  The solid angle here can be calculated by integrating 
the differential volume element dΩ = dφsinθdθ over the limits 0 to 2π and 0 to 0.147π. 
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            (2.3) 
When we evaluate the integral over the limits shown we find that the second term is 
approximately 0.1.  So the solid angle defined by f/1 collection optics is 0.4π stearadians.  This 
arrangement leads to collection of about 10% of the total light scattered from the sample. 
 
3.0 Definition of the differential cross section 

The part of the cross-section dσ that contributes to the detected scattered intensity is the 
ratio of the power at the detector dP to the incident intensity I0.  From dP = I0dσ we obtain  
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            (3.1) 
The differential power dP is proportional to the solid angle dΩ subtended by the detector.  The 
scattered irradiance is the power per stearadian at the detector such that dP = IsdΩ.  Note the 
difference between irradiance and intensity.  Incident light dP = I0dσ where I0 is in units of 
W/cm2.  Scattered light dP = IsdΩ where Is is in units of W/sr.  Thus, the differential cross 
section is 
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            (3.2) 
which has units of cm2/sr.  The Raman cross section is related to square of the projection of the 
polarizability tensor onto the incident ei and scattered es directions in the laboratory frame. 
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Or in terms of the angular frequency 
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Based on this definition we can determine the total Raman scattering cross section σR by  
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            (3.5) 
4.0 Symmetry and Raman activity 
 The transition polarizability is a tensor.  The transition polarizability tensor can be written 
as, 
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            (4.1) 
In form this has the appearance of the ground state polarizability tensor.  As is evident in 3.34, 
the only difference between transition polarizability and ground state polarizability is the final 
state |f>, which is the same as the initial state in the ground state polarizability and is different by 
one or more vibrational quanta in the transition polarizability.  Thus, the elements of the 
transition polarizability tensor can be symmetry,  𝛼𝛼𝑥𝑥𝑥𝑥, 𝛼𝛼𝑦𝑦𝑦𝑦, or 𝛼𝛼𝑧𝑧𝑧𝑧 or non-totally symmetric, 𝛼𝛼𝑥𝑥𝑥𝑥, 
𝛼𝛼𝑥𝑥𝑥𝑥, or 𝛼𝛼𝑦𝑦𝑦𝑦. 

Normal modes of vibration can be analyzed in terms of symmetry in order to assign 
Raman spectra.  Franck-Condon active modes are totally symmetric.  These modes can be 
Raman active since vibration along the normal mode coordinates gives rise to a transition 
polarizability as required by the Kramers-Heisenberg-Dirac model described in Chapter 12.  In 
molecules of high symmetry, the totally symmetric modes can be identified in the character table 
as those modes that contain x2, y2 and z2.  Depending on the symmetry of the molecule, the total 
symmetric mode may contain,   x2 +  y2 + z2 (Oh and Td), x2+  y2  and z2 (D4h) or x2, y2 and z2 
(lower symmetry point groups).  The relationship between x2, y2 and z2 ultimately determines the 
depolarization discussed in Section 2.1 (see also 4).  Examination of the character tables shows 
that infrared and Raman active modes are mutually exclusive in molecules with a center of 
symmetry (i.e. molecules that contain an inversion center, i).  In molecules of lower symmetry, 
that do not contain the symmetry operation, i, vibrational modes can be both infrared and Raman 
active. 
 Non-totally symmetric vibrational modes can be Raman active provided that they 
contribute to changes in the polarizability tensor.  In the character tables, these are the modes that 
transform as xz, xy and yz.     
 
5.0 The depolarization ratio 



 The depolarization ratio is defined experimentally as the ratio of the perpendicular to 
parallel scattered radiation.  Thus, 
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in terms of intensity or 
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            (5.2) 
in terms of the differential scattering cross sections.  The depolarization ratio can be used to 
correct the Raman scattering cross section for orientation.  It can be shown that 
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            (5.3) 
and the Raman scattering cross section is 
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            (5.4) 
 
5.1 Orientation averaging of the depolarization ratio 
 Thus far we have considered the elements of the transition polarizability tensor in the 
molecular frame x, y, and z.  In a Raman experiment we measure the scattering in the lab frame 
X, Y, and Z.  The scattering signal is the average of all molecular orientations in the lab frame.  
Traditional methods of carrying out the orientation averaging involve the use of direction 
cosines. 
 For a rank 2 tensor (e.g. transition polarizability) we can write down three rotational 
invariants, ΣJ, that are linear combinations of the αJ

M that are independent of reference frame.  
These are 
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            (5.3) 
where J = 0, 1, 2… and M = 0 , ± 1 ,…, ± J.  Each ΣJ is called an invariant because it is 
independent of orientation.  The length of a vector is independent of its orientation.  That is the 
same thing as saying that for the vector µ, the combination µx

2 + µy
2 + µz

2 is a rotational 
invariant.  A second rank tensor has three invariants,  
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            (5.4) 
The invariants are 
Σ0 isotropic part 
Σ1 anti-symmetric anisotropy 
Σ2 symmetric anisotropy 
 
The isotropic part of the polarizability is proportional to the square of the trace of the 
polarizability tensor Σ0 = (Trα)2/3.  The trace of  tensor α (written as Trα) is the sum of diagonal 
elements of the tensor.   Therefore, Σ2 represents the deviation of the polarizability from 
spherical symmetry.   The lab frame components |aZZ|2 and |aXZ|2 can be written as linear 
combinations of the invariants.   
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            (5.5) 
The depolarization ratio is 
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assuming the scattering geometry shown above.  Using the invariants the depolarization ratio is 
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6.0 The depolarization ratio in non-resonant Raman scattering 
The form of α in the molecular frame depends on the symmetry of the vibration.  For non-
resonant Raman the polarizability tensor is symmetric and therefore the anti-symmetric 
anisotropy Σ1 is zero. Inspection of the anti-symmetric anisotropy shows that it is zero when αρσ 
= ασρ. Σ2 depends on non-zero off diagonal terms and on differences in the diagonal terms.  It is 
not necessarily zero in non-resonant Raman scattering. 
 
6.1 Totally symmetric modes 
The polarzability tensor for a totally symmetric vibrational mode preserves this symmetry.  
These are the modes that we think of a Franck-Condon active modes in absorption spectroscopy.  
The Cartesian Raman tensor for any totally symmetric mode is of the form: 
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            (6.1) 
 
For molecules with spherical symmetry a = b = c.   
Symmetric top molecules have two equal components, so a = b ≠ c.   
Asymmetric top molecules have a ≠ b ≠ c.   
 
We can show this in the following simplified model, which we will assume that the small tensor 
elements are equal to zero.  We can represent the three possible Raman tensors in this 
approximation as follows. 
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For example, the Raman polarizability tensor for any totally symmetric mode of a totally 
symmetric molecule (CCl4 or SF6) has three equivalent diagonal components and so 
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Thus, Σ1 = Σ2 = 0 and ρ = 0.  It is often convenient to write out the totally and non-totally 
symmetric part of the polarizability, 
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where we define the average polarizability: 
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and the tensor β is the anisotropy of the polarizability: 
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This equation assumes that the Raman tensor is symmetric (and is only valid for non-resonant 
Raman scattering).  Non-symmetric molecules β can be non-zero even for totally symmetric 
modes. 
 
On the other hand if a = b ≠ c, which corresponds to planar molecules such as benzene and 
metalloporphyrins, which usually means αxx + αyy = α and αzz = 0.  We have 
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(6.6) 
Finally, for asymmetric top molecules we have a ≠ b ≠ c, which be approximated in the simplest 
case as means αxx = α and αzz = αyy = 0.  We have 
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(6.7) 
Thus, we see that the depolarization ratio for totally symmetric modes varies from 0 to 1/3 
depending on the relative magnitude of the diagonal tensor elements, αxx, αyy, and αzz,. 
 
6.2 Non-totally symmetric modes 
Non-totally symmetric modes are the modes that responsible for vibronic coupling or Herzberg-
Teller coupling in absorption spectroscopy.  For these modes Trα vanishes and only β 
contributes to the non-resonant Raman scattering cross section.  Since Trα vanishes for non-
totally symmetric modes we also have Σ0 = 0. For non-resonant Raman, we assume that ασρ 
= αρσ, so that we can write, 
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From which we see that only Σ2 is non-zero.  The depolarization ratio then becomes, 
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Thus, we see that the depolarization ratio is equal to ¾ regardless of the precise symmetry of the 
non-totally symmetric modes. In non-resonant Raman scattering ρ is never larger than 3/4.  
 
7.0 Raman scattering results from a transition polarizability 
In the molecular frame of reference the transition polarizability can be expressed using the 
Kramers-Heisenberg-Dirac (KHD) expression 
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            (7.1) 
The transition polarizability αρσ is expressed as a function of the incident radiation frequency ω0.  
The transition polarizability is a Cartesian tensor where ρ and σ are direction x,y,z in the 
molecular frame.  The first term is an anti-resonant term and the second term is a resonant term.  
Both terms are important for off-resonance or non-resonant Raman scattering.  Only the second 
term is important for resonant Raman scattering.  In the resonant term the energy denominator 
would approach infinity were it not for the damping term iΓn. Γn arises due to the finite lifetime 
of the intermediate state.  The shorter the lifetime in the intermediate state, the smaller the 
Raman cross section.  This is particularly important for resonant Raman scattering.   The states 
involved can be defined in terms of all 3N - 6 vibrational modes by writing: 
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Notice that only one of the modes actually changes its quantum number in the Raman process 
(the first one labeled by Q1).  The remaining modes end up in the same state that they started in.  
The potential energy surface is a 3N - 6 dimensional surface and the Raman process is occuring 
along only one dimension.  This can be represented as follows: 
 



v  v'' 
 
{v1,v2,…v3N-6}  {v''1,v2,…v3N-6} 
 
The quantum numbers v and v'' represent the two states shown. 
 As shown in Eqn. 7.1, polarizability arises due to state mixing.  The KHD expression 
shows mixing of the ground state with one or more higher electronic states.  In other words the 
states |i〉 and |f〉 refer to two different vibrational states in the ground electronic state.  The states 
|n〉 refer to a set of vibrational states in one or more electronic state.  When we consider resonant 
Raman scattering we will consider resonance with a single electronic state.  For non-resonant 
Raman scattering the intermediate must be a superposition.  In practice, we cannot calculate the 
magnitude of the non-resonant Raman cross section due to the complex nature of a superposition 
state.  We can, however, determine the polarization, symmetry properties, and selection rules for 
non-resonant Raman scattering. 
 
8.0 Introduction of the vibronic coupling operator: approach to resonance 
If the frequency of exciting radiation is far removed from the resonant frequency, i.e. ω0 << ωge 
then vibrational energy terms in the energy denominator can be ignored compared to ω0 - ωge and 
ω0 + ωge.  The transition polarizability becomes 
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            (8.1) 
The quantities 〈0|v〉 and 〈v|v''〉 are vibrational overlaps.  The square of a vibrational overlap is a 
Franck-Condon factor so the Raman excitation profile bears a defined relationship to the 
absorption spectrum.  Here the v quantum numbers refer to the intermediate state vibrational 
energy levels.  Since excitation is off-resonance there are in pricnciple many vibrational and 
electronic states that can contribute.  The above approach is a sum-over-states approach.  We can 
use the closure relation Σv|v〉〈v| = 1 to simplify the expressions. 
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            (8.2) 
The bottom equation describes Rayleigh scattering.  The initial and final vibrational states are the 
same in Rayleigh scattering.  There are no selection rules.  All molecules are active Rayleigh 
scatterers.  The Kroenecker delta in the top equation is δ0v'' = 〈0|v''〉 where δ0v'' = 0 if 0 ≠ v''.  Thus 
the first term and the second term are the same here.  This means that non-resonant Raman 
scattering will not occur within the Condon approximation.  This observation, first made by 
Albrecht, represents a paradox for Raman scattering.  In reality the restriction that Raman 
scattering can only be observed for a breakdown of the Condon approximation is a result of the 
simplicity of the model.  We can call this breakdown, Albrecht’s paradox.  Obviously, totally 
symmetric modes are observed in non-resonant Raman spectra of molecules. 



In order to explain non-resonant Raman scattering within the formalism of Eqn. 8.2, we 
must consider the coordinate dependence to the transition dipole moment, e.g. expand the 
transition dipole moment in a power series 
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            (8.3) 
and keep only the first term we find that the coordinate dependence of the transition moment can 
play a role.  The reason for this is that even though 〈0|v''〉 = 0 for  0 ≠ v'', in general 〈0|Q|v''〉 does 
not need to be zero.  Thus, for Raman scattering to be allowed we use the linear term above and 
make the substitution 
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            (8.4) 
The transition polarizability is 
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            (8.5) 
The selection rules arise from the requirement that 〈0|Q|v''〉 does not vanish.  We can define a 
polarizability derivative such that the transition polarizability is 
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            (8.6) 
where α'ρσ is the polarizability derivative also called the derived polarizability.    The terms 
α'ρσ and (∂αρσ/∂Qi) are equivalent.  For a harmonic oscillator 〈v|Q|v''〉 vanishes except when v'' = 
v± 1.  Thus, the selection rule of ∆v = ± 1 applies to non-resonant Raman scattering as well as 
infrared spectroscopy (within the harmonic approximation). 
 
9.0 Albrecht theory of resonant Raman Scattering 
 If the incident frequency ω0 is in resonance with an electronic transition of the molecule 
the anti-resonant term (with ω0 + ωeg in the denominator) can be neglected and only the resonant 
term contributes to Raman scattering.  If we keep terms up to linear in Q, we may express the 
transition polarizability as a sum of two terms 
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            (9.1) 
These terms are called the Albrecht A and B terms.  The first of these terms arises from the 
Condon approximation.  The Condon approximation states that there is no nuclear coordinate 



dependence to the wave function so that all terms in the expansion vanish except the µ0
ge term 

that does not depend on Qi. 
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            (9.2) 
In this expression the energy of an incident photon is equal to that of the energy difference 
between a ground state vibrational energy level gv' and an excited state level ev. The term iΓev is 
a phenomenological damping term.  This term arises from dephasing and lifetime broadening in 
the excited state levels.  One can envision the contribution of Γ as an energy width to each of the 
excited state energy levels. 
 
 
 
 
 

 
Figure 7 Depiction of the dependence of dephasing rate on the excited state quantum number. 

 
The thickness of the blue excited state levels is dependent upon excited state lifetimes and 
dephasing processes.  The various levels have different energy widths to illustrate the fact that 
the dephasing rate can depend on vibrational state.  Without the dephasing rate Γev the resonance 
term would approach  when ωev,gv' = ω0.  The larger the dephasing terms iΓev the smaller the 
overall resonant Raman cross section.  The terms 〈v'|v〉 and 〈v|v''〉 are Franck-Condon factors.  In 
fact, these are the same Franck-Condon factors found in absorption spectroscopy.  Just as in 
absorption spectroscopy there must be displacement along a normal mode coordinate upon 
electronic excitation in order for it to be Franck-Condon active. 

The Albrecht B-term describes resonance Raman scattering of a vibronically active 
vibrational mode.  In electronic absorption a vibronic mode is one which causes a transition to be 



allowed by distortion of the molecule to lower the symmetry.   In resonant Raman scattering a 
vibronic mode has a resonance enhancement pattern that is different from a Franck-Condon 
active mode for the same reason.  The Franck-Condon active modes are the totally symmetric 
modes of the molecule and the vibronic modes are the non-totally symmetry modes of the 
molecule.  The B term is more complicated than the A term.  In the A term the transition moment 
for the ground to excited state electronic transition µge is contributes and in B-term scattering it is 
the terms in (∂µge/∂Qi)0Qi that contribute. In Albrecht theory the B-term is given by, 
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            (9.4) 
 
10.0 Polarization in resonant Raman scattering 
10.1 Totally symmetric modes 
 The polarizability depends on the symmetry of the electronic transition.  For example, in 
a z-polarized transition a totally symmetric A-term mode has only one non-zero tensor 
component, αzz.  From this consideration we can readily calculate that ρ = 1/3, as shown above 
for asymmetric top molecules.  A doubly degenerate resonant electronic state (i.e. a state that x,y 
polarized such as in porphyrins) results in two equal diagonal tensor components, e.g. αxx = αyy, 
which leads to ρ = 1/8.   If the electronic transition is triply degenerate (i.e. if the molecule is 
spherically symmetric such as SF6) then  αxx = αyy = αzz.  In this case ρ = 1/∞ = 0.  These 
examples show that the limiting cases for the depolarization ratio of totally symmetric modes are 
0 ≤ 𝜌𝜌 ≤ 1/3.   
 
10.2 Vibronic coupling and anomalous polarization in non-totally symmetric modes 

Vibronic coupling of two states can lead to Raman tensors in which ασρ ≠ 0, but ασσ  = 0.  
Such vibrational modes are non-totally symmetric. The origin of coupling via non-totally 
symmetric modes can be found in the Herzberg-Teller coupling between two states. As a 
molecule vibrates along a non-totally symmetric mode coupling is induced with other electronic 
states. This coupling results in enhancement at molecule geometries that are distorted from the 
equilibrium geometry. This is precisely what is described in the B-term of Albrecht theory. B 
term enhancement can also lead to anomalous polarization in which ρ > 3/4.  Vibronic coupling 
of two states can lead to Raman tensors in which ασρ ≠ αρσ.  A nonzero value of Σ1 can lead to a 
depolarization ratio of greater than 3/4.   
 Anomalous polarization can be explained as follows using the Herzberg-Teller approach.  
Suppose that the electronic transition g  e is x polarized and the transition g  r is y polarized 
leading to a Raman activity of the fundamental transition of a non-totally symmetric vibration of 
symmetry Γv = ΓxΓy.  The transition is resonant with |e0〉 and |e1〉 intermediate states.   Herzberg-
Teller coupling requires that vibronic coupling to state mix |e0〉 with |r1〉 and |e1〉 with |r0〉.  The 
vibronic intermediate states are: 
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            (10.1) 
Using the above states to write the Albrecht B-term leads to the following xy and yx Raman 
tensor components: 
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            (10.2) 
The αxy component dominates when the incident frequency is resonant with the g0  e1 
transition, while the αyx component is resonant with the g0  e0 transition.  If the energy levels  
of the states e and r are well separated then the energy denominators are nearly equal: 
 

𝜔𝜔𝑟𝑟0 − 𝜔𝜔𝑒𝑒1 ≈ 𝜔𝜔𝑟𝑟1 − 𝜔𝜔𝑒𝑒0 
            (10.3) 
If ω0 is far from resonance then αxy ≈ αyx.  This is a non-resonant condition where the Raman 
tensor is symmetric, Σ1 = 0, and ρ = 3/4.  On the other hand, close to resonance with the 0-1 
transition, we have αxy >> αyx and for ω0 close to the frequency of the 0-0 transition, αyx >> αxy.  
When the exciting radiation is midway between the 0-0 and 0-1 resonances, the relationship αxy 
≈ -αyx results.  This leads to Σ1  ≠ 0, while Σ0 = Σ2 = 0.  At this frequency the depolarization ratio 
approaches infinity.  Anomalous polarization was first observed in the vibronic bands of hemes. 
 
Appendix. The integration of the rotational invariants in the molecular frame 

Here we give an intuitive argument to explain the contributions of the various invariants to 
depolarization ratio. The crucial property of an invariant is that the excitation is independent of 
the orientation. Therefore, to determine the contribution to the polarization we only need to 
consider the interaction of the molecular polarizability with the X and Z polarized light waves in 
the laboratory frame. The totally symmetric invariant involves excitation and scattering from the 
same direction. for αZZ. Since the direction cosine from z in the molecular frame to Z in the lab 
frame is cosθ. The square of this value is 
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We can show that similar relationships will hold for αxx and αyy, gives the rotational invariant, 
which in this case is the average excitation of all three  
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Since each of the terms in this sum has the same properties with respect to the orientation 
average the total invariant is multiplied by the factor of 1/3 calculated above. 

The off-diagonal terms are: 
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Since the matrix is symmetric (by assumption) 
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The second contribution to the symmetric anisotropy gives a similar value. Thus, 
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For the totally symmetric contribution to the perpendicular component we find. 
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As above since there are two identical tensor elements αxz = αzx that have this relationship, so 
the factor is 1/10.  
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