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Collection of scattered light
Although we discuss the light scattered along Y it must 

be understood that light is in fact scattered into all 

directions.  The solid angle of a sphere is 4p

stearadians and the solid angle collected is dW where 

dW < 4p.  For example, if the f-number of a collection 

lens is 1 then the geometry for collection is



F

D



Collection of scattered light

In this case since D = F we have  = arctan(1/2) 

= 26.56o = 0.147p radians.  The solid angle here can be 

calculated by integrating the differential volume element 

dW = dfsind over the limits 0 to 2p and 0 to 0.147p.

When we evaluate the integral over the limits shown we 

find that the second term is approximately 0.1.  So the 

solid angle defined by f/1 collection optics is 0.4p

stearadians.  This arrangement leads to collection of 

about 10% of the total light scattered from the sample.
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Raman scattering

The Raman spectrum of a compound with 

vibrational modes at 300 and 800 cm-1

observed with a 19,500 cm-1 exciting line 

at 300K.  The very strong line at no is due 

to Rayleigh scattering.  The anti-Stokes 

component of the Raman scattering is 

weaker than the Stokes component by 

exp(-Evib/kT).

In normal Raman, the scattering is not from a stationary state 

but from a virtual state.  Virtual states can be considered as 

stationary states that have been spread out by the uncertainty 

principle, E t  h where E is the amount by which the 

photon's energy fails to be in resonance with the closest lying 

excited state and t is the time the system can spend in this 

state.



The two types of normal Raman scattering.

Since t  (c)-1, if the exciting line, n0 is 20,000 cm-1 and 

the lowest excited state is 30,000 cm-1, then  E = 

1x104 cm-1 and t  (1x104 x 3x1010)-1  3 fs or about a 

vibrational period - normal Raman scattering is a very 

fast process.

∆E ≈ h/∆t

Stokes and anti-Stokes



What fraction of the molecules will undergo scattering 

will depend upon how the electrons are affected by the 

electric field, i.e., on the molecule's polarizability ().  

One can view the process as the photon initiating an 

oscillating dipole () in the molecule as the electrons 

oscillate with the electric field; it is then the oscillating 

dipole that radiates the scattered photon (much like a 

radio transmitter).

The strength of this induced dipole is proportional to the 

electric field of the photon.   The proportionality constant 

is the molecular polarizability, .  Since the dipole and 

the electric field are actually vectors, the polarizability is 

a tensor. 

inde

Molecular polarizability
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where xz (≠ 0) is a measure of how strongly the z-component 

of the electric field (z-polarization) induces a dipole in the x-

direction: this implies that the vibration interacts with the 

electric field in such a way so as to rotate the polarization 

of the electric field.  

Indeed, one of the important pieces of information available 

from Raman scattering is the polarization change that the 

incoming photon undergoes. 

The polarizability tensor



Classical description 

of Raman scattering

molecule = M +
M

Q
Qcos(vt)

 fi =
M

Q
Qcos(vt)E0cos(0t)

=
M

Q
Q
2

E0 cos([0 – V]t) + cos([0 + V]t)

The molecular vibration at v alters the polarizability according 

to:

A transition dipole moment from state i to f is created by

Interaction of radiation at frequency 0. 



The intensity of scattered radiation which is polarized 

perpendicular to that of the incoming radiation is defined 

as I and that of the radiation parallel to the incoming 

radiation as I then the depolarization ratio,  is defined 

as,

 =  I/I

When the polarizability tensor is diagonal, the vibration 

does not rotate the electric vector: all of the intensity will 

remain parallel to the incoming radiation and  = 0.  This 

is isotropic scattering.  

However, if any of the off-diagonal elements of the 

polarizability tensor are non-zero, then there is intensity in 

I and  > 0.  

The depolarization ratio



Geometry for polarization measurement
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For a rank 2 tensor (e.g. transition polarizability) we can 

write down three rotational invariants, SJ, that are linear 

combinations of the JM that are independent of reference 

frame.  These are

where J = 0, 1, 2… and M = 0 , ± 1 ,…, ± J.  Each SJ is 

called an invariant because it is independent of 

orientation.  The length of a vector is independent of its 

orientation.  That is the same thing as saying that for the 

vector m, the combination mx
2 + my

2 + mz
2 is a rotational 

invariant. 

Definition of an invariant

SJ = J
M

2

S
M = – J

J



A second rank tensor has three invariants, 

The invariants are

S0 isotropic part    

S1 anti-symmetric anisotropy

S2 symmetric anisotropy

Three invariants of a second-rank tensor
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The isotropic part of the polarizability is proportional to 

the square of the trace of the polarizability tensor S0 = 

(Tr)2/3.  The trace of  tensor a (written as Tr) is the sum 

of diagonal elements of the tensor. 

Therefore, S2 represents the deviation of the polarizability 

from spherical symmetry.  

The lab frame components |ZZ|
2 and |XZ|

2 can be written 

as linear combinations of the invariants. 

Invariants in the lab frame
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The depolarization ratio is:

Using the invariants the depolarization ratio is

Thus, we see that isotropic Raman (S1 = 0) is polarized and

 = 0 (for a molecule of spherical symmetry)

and anisotropic Raman (S0 = 0) is depolarized and hence

 = 3/4

Regimes of Raman polarization

 =
ZX

2

ZZ

2

 = 5S1 + 3S2

10S0 + 4S2



The form of  in the molecular frame depends on the 

symmetry of the vibration.  For non-resonant Raman the 

polarizability tensor is symmetric and therefore the anti-

symmetric anisotropy S1 is zero. Inspection of the anti-

symmetric anisotropy shows that it is zero when rs = sr. 

S2 depends on non-zero off diagonal terms and on 

differences in the diagonal terms.  It is not necessarily zero 

in non-resonant Raman scattering.

Non-resonant Raman scattering



The polarizability tensor for a totally symmetric vibrational 

mode preserves this symmetry.  These are the modes that 

we think of a Franck-Condon active modes in absorption 

spectroscopy.  The Cartesian Raman tensor for any totally 

symmetric mode is of the form:

For molecules with spherical symmetry a = b = c.  

Symmetric top molecules have two equal components, 

so a = b  c.  

Asymmetric top molecules have a  b  c. 

Non-resonant Raman Scattering:

Totally symmetric modes

 =
a 0 0
0 b 0
0 0 c



For example, the Raman polarizability tensor for any totally 

symmetric mode of a totally symmetric molecule (CCl4 or 

SF6) has three equivalent diagonal components and so

Thus, S1 = S2 = 0 and  = 0.

However, there are two other cases

Symmetric top                               Asymmetric top

Non-resonant Raman Scattering:

Totally symmetric modes

 =
a 0 0
0 a 0
0 0 a



It is often convenient to write out the totally and non-totally 

symmetric part of the polarizability,

where we define the average polarizability:

and the tensor b is the anisotropy of the polarizability 

 = 
1 0 0
0 1 0
0 0 1

+ b

 = Tr
3

=
xx + yy + zz

3

b =

xx –  yx zx

xy yy –  zy

xz yz zz – 



Polarized modes
We can treat three cases for molecules of high symmetry.  
Here we ignore off-diagonal terms (e.g. axy etc.)

1. Spherical symmetry (e.g. Td, Oh)

xx = yy = zz ; S0 = 32 1 = 0 ; 2 = 0

 = 0

2. Axial symmetry (e.g. D4h) (symmetric top) 

xx = yy but zz = 0 ; S0 = 4/32 ; S1 = 0 ; S2 = 2/32

 = 1/8

3. Different symmetry axes (e.g. D2h) (asymmetric top) 

xx >> yy and zz which are approximately 0.

S0 = 1/32 ; S1 = 0 ; S2 = 2/32

 = 1/3



Normal modes - CO2

Symmetric stretch
(infrared inactive)

Asymmetric stretch

   3 2349 cm
-1       Bends

2 667 cm
-1

.+.

(infrared active)

There are 4 normal modes (3N - 5).  Three of them 

are infrared active since they show a dipole moment 

change in their motion.

Symmetric stretch

1 2289 cm-1

(Raman active)

Asymmetric stretch

3 2349 cm-1

(IR active)

Bends

2 667 cm-1

Asymmetric stretch

3 2349 cm-1

(IR active)

(IR active)  



Normal modes - water

Symmetric stretch

   1 3650 cm-1
Asymmetric stretch

   3 3750 cm-1
      Bend

2 1600 cm-1

There are 3 normal modes (3N - 6).  All of them are 

infrared active since all show a dipole moment 

change in their motion.  The harmonic approximation

can be applied to each normal mode.

Symmetric Stretch

1 3825 cm-1

Asymmetric Stretch

3 3935 cm-1

Bend

2 1654 cm-1


