
Non-linear least squares



We have extensively studied linear least squares or linear 

regression. We see that there is a unique regression line 

that can be determined for a set of data that should be 

linear. The same method can also be applied to polynomial 

data. This type of approach will be considered in the 

Savitzky-Golay method in Computer Lab 5. We can 

generalize the idea of least squares to non-linear models 

(exponential, Gaussian, Lorentzian, and many other 

functions). We have seen that the same matrix method can 

be applied.

Concept of non-linear least squares

𝑋𝑇𝑋 −1𝑋𝑇𝑌 = 𝛽

𝐽𝑇𝐽 −1𝐽𝑇𝑌 = 𝛽𝑛𝑜𝑛−𝑙𝑖𝑛𝑒𝑎𝑟



In least squares the X matrix is determined by the 

independent variable. We can view the X matrix as the 

derivative of the function with respect to the parameters

Understanding linear least squares

from the Savitzky-Golay view
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In non-least squares the J matrix is also determined by the 

derivatives of the function with respect to the parameters. 

However, the resulting values are not unique and therefore

The non-linear fitting process is iterative.

There can be any number of variables.

The iterative nature of 

non-linear least squares
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Consider a set of m data points, (x1,y1), (x2,y2),..... 

(xm,ym) and a curve (model function) y = f(x,b) that in 

addition to the variable x also depends on n parameters, b = 

( b1, b2, ... bn) with m > n. It is desired to find the vector b of 

parameters such that the curve fits best the given data in 

the least squares sense, that is, the sum of squares

The sum of squares of residuals

is minimized, where the residuals (errors) ri are given by

for i = 1, 2, ....m.



The minimum value of S occurs when the gradient is zero. 

Since the model contains n parameters there are n gradient 

equations:

In a non-linear system, the derivatives are functions of both 

the independent variable and the parameters, so these 

gradient equations do not have a closed solution. Instead, 

initial values must be chosen for the parameters. Then, the 

parameters are refined iteratively, that is, the values are 

obtained by successive approximation,

The minimization criterion



Here, k is an iteration number and the vector of increments,

Db is known as the shift vector. At each iteration the model is 

linearized by approximation to a first-order Taylor's series 

expansion about bk

The Jacobian, J, is a function of constants, the 

independent variable and the parameters, so it changes 

from one iteration to the next. Thus, in terms of the 
linearized model,

and the residuals are given by

Calculation of the residuals



for j = 1, ...., n.

The normal equations are written in matrix notation as

Substituting these expressions into the gradient equations, 

they become

which, on rearrangement, become n simultaneous linear 

equations, the normal equations

The normal equations in matrix form



When the observations are not equally reliable, a weighted 

sum of squares may be minimized,

Each element of the diagonal weight matrix W should, ideally, 

be equal to the reciprocal of the error or variance of the 

measurement. The normal equations are then

These equations form the basis for the Gauss-Newton 

algorithm for a non-linear least squares problem.

Weighted sum of squares



The minimum parameter 

values are to be found at the 

minimum of a surface in 

parameter space. With two or 

more parameters the contours 
of S with respect to any pair of 

parameters will be concentric 

ellipses.  

In linear least squares the objective function, S, is a quadratic 

function of the parameters.

The parameter surface



The more the parameter values differ from their optimal values, 

the more the contours deviate from elliptical shape. A 

consequence of this is that initial parameter estimates should 

be as close as practicable to their (unknown!) optimal values. 

It also explains how divergence can come about as the 
Gauss–Newton algorithm is convergent only when the 

objective function is approximately quadratic in the 

parameters.

The objective function is quadratic with respect to the 

parameters only in a region close to its minimum value, where 

the truncated Taylor series is a good approximation to the model.

Approximating the surface as a quadratic


