Measurements Lab

RC time constant

NC State University

Basic RC circuit

Consider a capacitor initially charged to V_{0}, and connected to a resistor Kirchoff Voltage Law (Loop Law): $\mathrm{V}_{\mathrm{r}}+\mathrm{V}_{\mathrm{c}}=0$ or $\mathrm{V}_{\mathrm{r}}=-\mathrm{V}_{\mathrm{c}}$ The same current runs through each element: $i_{r}=i_{c}$. Using voltage laws for the capacitor and resistor give us

$$
\begin{gathered}
\mathbf{V}_{\mathrm{c}}=1 / C \mathbf{q}_{\mathrm{c}} \\
\mathbf{V}_{\mathrm{r}}=\mathrm{R} \mathbf{i}_{\mathrm{r}}
\end{gathered}
$$

and the relation between charge and current, $\mathbf{q}_{c}{ }^{\prime}=\mathbf{i}_{c}$, together with the voltage and current relations, we can obtain a differential equation of motion

$$
\mathbf{q}_{c}^{\prime}=-(1 / R C) \mathbf{q}_{c}
$$

To see it in terms of current, take its time derivative:

$$
i_{c}{ }^{\prime}=-(1 / R C) i_{c}
$$

Or in terms of voltage, using

$$
\mathbf{V}_{\mathrm{c}}^{\prime}=-(1 / R C) \mathbf{V}_{\mathrm{c}}
$$

All of these equations of motion have an easy solution, e.g.

$$
\mathbf{V}_{\mathrm{c}}=\mathbf{V}_{0} \mathrm{e}^{-\mathrm{t} / \mathrm{RC}}
$$

Charging time response

$$
\tau=R C
$$

$$
V_{\text {charge }}(t)=V_{0}\left(1-e^{-t / \tau}\right)
$$

$$
V_{\text {discharge }}(t)=V_{0} e^{-t / \tau}
$$

Inverting operational amplifier

The principle of operation is that the voltage difference at the + and - inputs will be maintained at zero and no current flows into the input terminals. If the +input is grounded then the - input must satisfy $\mathrm{V}=0$. The currents through the two resistors must be equal and opposite. Ohm's law gives:

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{-i R_{f}}{i R_{\text {in }}}
$$

The minus sign on the output voltage gives rise to the name "inverting". The gain in signal is:

$$
\text { Gain }=\frac{R_{f}}{R_{\text {in }}}
$$

