
The Fourier transform in X-ray crystallography



The electron density can be obtained from the Fourier transform of the structure factors. 

These are obtained from the diffraction spots observed in the X-ray diffraction experiment. 

The scattering in the various planes of the crystal is recorded in terms of reciprocal lattice 

vectors cataloged by the Miller indices h, k and l. The Fourier transform for the density is:
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The inverse Fourier transform is:

𝑐ℎ𝑘𝑙 =
1

𝑎𝑏𝑐
න

0

𝑎

න

0

𝑏

න

0

𝑐

𝜌 𝑥, 𝑦, 𝑧 𝑒𝑥𝑝 𝑖
2𝜋ℎ

𝑎
𝑥 + 𝑖

2𝜋𝑘

𝑏
𝑦 + 𝑖

2𝜋𝑙

𝑐
𝑧 𝑑𝑥𝑑𝑦𝑑𝑧

Electron density vs. Structure factor 



Here is a nice example, from Kevin Cowtan's Interactive Structure Factor 

Tutorial. The example is 2-dimensional, and shows how rapidly the structure 

factors, with their phases, converge to the target structure. The target electron 
density function looks like this:

Dr. Kevin Cowtan, York University

A 2-D visual example of structure factors



(1,0)(0,1) (-1,2)

(-2,1) (1,2) (3,-2)



Cowtan's simulation leads to the approximate Fourier synthesis of the target 

from just the seven largest structure factors: those corresponding to

(h,k)=(0,1),(1,0),(−1,2),(−2,1),(1,2),(3,−2),(3,1). 

Here is how the synthesis proceeds, step by step, each time adding in the next 

structure factor. The unit cell (not orthorhombic!) is outlined in dots.

A 2-D visual example of structure factors



Fast Fourier Transform



While NMR line shapes can be obtained in theory using

an analytical function, try doing this if there are 50 nucleic

oscillating in the sample.

There are many examples in science where we need FT 

Methods. We will use Fourier transform infrared in the class.

In that method the signal is composed of the detector 

response at various different positions of the moving mirror 

in an interferometer. We must take the FT of the 

“interferogram” in order to obtain the optical response.

In powder X-ray diffraction the electron density is obtained 

as the FT of the measured intensities at various h,k,l (Miller) 

indices, corresponding to Bragg planes in the material.

The need for a fast Fourier Transform



Evaluating this definition directly requires O(N2) operations: there 
are N outputs Xk, and each output requires a sum of N terms. An 

FFT is any method to compute the same results in O(N log N) 

operations. 

An FFT is the fastest known method to compute the Discrete 

Fourier Transfer (DFT). Let x0, ...., xN-1 be complex numbers. 

The DFT is defined by the formula

The discrete Fourier transform



By far the most commonly used FFT is the Cooley-Tukey algorithm. 

This is a divide and conquer algorithm that recursively breaks down a 

DFT of any composite size N = N1N2 into many smaller DFTs of 

sizes N1 and N2, along with O(N) multiplications by complex roots of 

unity traditionally called twiddle factors (after Gentleman and Sande, 

1966).

The Cooley-Tukey algorithm

This method (and the general idea of an FFT) was published by 
J.W. Cooley and J.W. Tukey in 1965, but it was later discovered that 

those two authors had independently re-invented an algorithm 
known to Gauss around 1805.



The best known use of the Cooley–Tukey algorithm is to divide the 

transform into two pieces of size N/2 at each step, and is therefore 

limited to power-of-two sizes, but any factorization can be used in 

general (as was known to both Gauss and Cooley/Tukey). These are 
called the radix-2 and mixed-radix cases, respectively (and other 

variants such as the split-radix FFT have their own names as well). 

Although the basic idea is recursive, most traditional implementations 

rearrange the algorithm to avoid explicit recursion. Also, because the 
Cooley–Tukey algorithm breaks the DFT into smaller DFTs, it can be 

combined arbitrarily with any other algorithm for the DFT.

Divide and conquer



The Radix-2 DIT algorithm rearranges the DFT of the function 
xn into two parts: a sum over the even-numbered indices n = 

2m and a sum over the odd-numbered indices n = 2m + 1.

Even and odd terms

A radix-2 decimation-in-time (DIT) FFT is the simplest and 

most common form of the Cooley–Tukey algorithm, although 

highly optimized Cooley–Tukey implementations typically use 

other forms of the algorithm as described below. Radix-2 DIT 
divides a DFT of size N into two interleaved DFTs (hence the 

name "radix-2") of size N/2 with each recursive stage.



Radix-2 DIT first computes the DFTs of the even-indexed 
inputs x2m = x0, x2, ...xN-2 and of the odd-indexed inputs x2m+1

= x1, x3,....xN-1, and then combines those two results to 

produce the DFT of the whole sequence. This idea can then 
be performed recursively to reduce the overall runtime to 

O(N log N). This simplified form assumes that N is a power of 

two. Since the number of sample points N can usually be 

chosen freely by the application, this is often not an 

important restriction.

Recursive approach



One can factor a common multiplier out of the 

second sum, as shown in the equation below. It is then 

clear that the two sums are the DFT of the even-indexed 
part x2m and the DFT of odd-indexed part x2m+1 of the 

function. Denote the DFT of the Even-indexed inputs 

x2m by Ek and the DFT of the Odd-indexed inputs x2m+1 by Ok

and we obtain:

The twiddle factor


