
The Fourier transform in X-ray crystallography

The electron density can be obtained from the Fourier transform of the structure factors.

These are obtained from the diffraction spots observed in the X-ray diffraction experiment.

The scattering in the various planes of the crystal is recorded in terms of reciprocal lattice

vectors cataloged by the Miller indices h, k and l. The Fourier transform for the density is:

𝜌 𝑥, 𝑦, 𝑧 = ෍

ℎ=−∞

∞

෍

𝑘=−∞

∞

෍

𝑙=−∞

∞

𝑐ℎ𝑘𝑙 𝑒𝑥𝑝 𝑖
2𝜋ℎ

𝑎
𝑥 + 𝑖

2𝜋𝑘

𝑏
𝑦 + 𝑖

2𝜋𝑙

𝑐
𝑧

The inverse Fourier transform is:

𝑐ℎ𝑘𝑙 =
1

𝑎𝑏𝑐
න

0

𝑎

න

0

𝑏

න

0

𝑐

𝜌 𝑥, 𝑦, 𝑧 𝑒𝑥𝑝 𝑖
2𝜋ℎ

𝑎
𝑥 + 𝑖

2𝜋𝑘

𝑏
𝑦 + 𝑖

2𝜋𝑙

𝑐
𝑧 𝑑𝑥𝑑𝑦𝑑𝑧

Electron density vs. Structure factor

Here is a nice example, from Kevin Cowtan's Interactive Structure Factor

Tutorial. The example is 2-dimensional, and shows how rapidly the structure

factors, with their phases, converge to the target structure. The target electron
density function looks like this:

Dr. Kevin Cowtan, York University

A 2-D visual example of structure factors

(1,0)(0,1) (-1,2)

(-2,1) (1,2) (3,-2)

Cowtan's simulation leads to the approximate Fourier synthesis of the target

from just the seven largest structure factors: those corresponding to

(h,k)=(0,1),(1,0),(−1,2),(−2,1),(1,2),(3,−2),(3,1).

Here is how the synthesis proceeds, step by step, each time adding in the next

structure factor. The unit cell (not orthorhombic!) is outlined in dots.

A 2-D visual example of structure factors

Fast Fourier Transform

While NMR line shapes can be obtained in theory using

an analytical function, try doing this if there are 50 nucleic

oscillating in the sample.

There are many examples in science where we need FT

Methods. We will use Fourier transform infrared in the class.

In that method the signal is composed of the detector

response at various different positions of the moving mirror

in an interferometer. We must take the FT of the

“interferogram” in order to obtain the optical response.

In powder X-ray diffraction the electron density is obtained

as the FT of the measured intensities at various h,k,l (Miller)

indices, corresponding to Bragg planes in the material.

The need for a fast Fourier Transform

Evaluating this definition directly requires O(N2) operations: there
are N outputs Xk, and each output requires a sum of N terms. An

FFT is any method to compute the same results in O(N log N)

operations.

An FFT is the fastest known method to compute the Discrete

Fourier Transfer (DFT). Let x0,, xN-1 be complex numbers.

The DFT is defined by the formula

The discrete Fourier transform

By far the most commonly used FFT is the Cooley-Tukey algorithm.

This is a divide and conquer algorithm that recursively breaks down a

DFT of any composite size N = N1N2 into many smaller DFTs of

sizes N1 and N2, along with O(N) multiplications by complex roots of

unity traditionally called twiddle factors (after Gentleman and Sande,

1966).

The Cooley-Tukey algorithm

This method (and the general idea of an FFT) was published by
J.W. Cooley and J.W. Tukey in 1965, but it was later discovered that

those two authors had independently re-invented an algorithm
known to Gauss around 1805.

The best known use of the Cooley–Tukey algorithm is to divide the

transform into two pieces of size N/2 at each step, and is therefore

limited to power-of-two sizes, but any factorization can be used in

general (as was known to both Gauss and Cooley/Tukey). These are
called the radix-2 and mixed-radix cases, respectively (and other

variants such as the split-radix FFT have their own names as well).

Although the basic idea is recursive, most traditional implementations

rearrange the algorithm to avoid explicit recursion. Also, because the
Cooley–Tukey algorithm breaks the DFT into smaller DFTs, it can be

combined arbitrarily with any other algorithm for the DFT.

Divide and conquer

The Radix-2 DIT algorithm rearranges the DFT of the function
xn into two parts: a sum over the even-numbered indices n =

2m and a sum over the odd-numbered indices n = 2m + 1.

Even and odd terms

A radix-2 decimation-in-time (DIT) FFT is the simplest and

most common form of the Cooley–Tukey algorithm, although

highly optimized Cooley–Tukey implementations typically use

other forms of the algorithm as described below. Radix-2 DIT
divides a DFT of size N into two interleaved DFTs (hence the

name "radix-2") of size N/2 with each recursive stage.

Radix-2 DIT first computes the DFTs of the even-indexed
inputs x2m = x0, x2, ...xN-2 and of the odd-indexed inputs x2m+1

= x1, x3,....xN-1, and then combines those two results to

produce the DFT of the whole sequence. This idea can then
be performed recursively to reduce the overall runtime to

O(N log N). This simplified form assumes that N is a power of

two. Since the number of sample points N can usually be

chosen freely by the application, this is often not an

important restriction.

Recursive approach

One can factor a common multiplier out of the

second sum, as shown in the equation below. It is then

clear that the two sums are the DFT of the even-indexed
part x2m and the DFT of odd-indexed part x2m+1 of the

function. Denote the DFT of the Even-indexed inputs

x2m by Ek and the DFT of the Odd-indexed inputs x2m+1 by Ok

and we obtain:

The twiddle factor

