Fourier Transform Applications

Gaussian <-> Gaussian FT Doppler broadening Full Width at Half Maximum

Gaussian broadening

There are kinetic models for solvent effects on spectra that include the recoil of molecules following an initial optical excitation. In these models the time-response function is Gaussian. We could call this an inertial response. There is some molecular inertia that delays the response.

$$G(\omega) = \frac{1}{\pi} \int_{0}^{\infty} exp\{-Dt^{2}\}exp\{-i\omega t\}dt$$

To calculate the Fourier transform we need to complete the square using $exp(A\omega^2)$

$$G(\omega) = \frac{1}{\pi} exp\{A\omega^2\} \int_{0}^{\infty} exp\{-Dt^2 - i\omega t - A\omega^2\} dt$$

Gaussian broadening

In order for the perfect square to be a Gaussian it must have the form:

$$G(\omega) = \frac{1}{\pi} exp\{A\omega^2\} \int_0^\infty exp\{-(\sqrt{D}t + B\omega)^2\} dt$$

To evaluate the coefficients we expand the argument of the exponent and set it equal to the previous form:

$$Dt^2 + 2\sqrt{D}B\omega t + B^2\omega^2 = Dt^2 + i\omega t + A\omega^2$$

The cross term must be $i = 2\sqrt{DB}$ and $A = B^2$. Therefore, $B = i/2\sqrt{D}$ and A = -1/4D. Thus, we see that:

$$exp\{-Dt^2\} \leftarrow FT \rightarrow exp\{-\omega^2/4D\}$$

Doppler broadening

The kinetic energy of a gas is:

$$E = \frac{1}{2}ms^2$$

The Maxwell distribution of speed is:c

$$exp\left\{-\frac{ms^2}{2k_BT}\right\}$$

The Doppler shift in the observed frequency is:

$$\nu_{obs} = \nu \left(\frac{1}{1 \pm s/c} \right)$$

$$s = \frac{(v_{obs} - v)c}{v}$$

Doppler broadening

The Doppler broadened line shape is:

$$I(\nu) = exp\left\{-\frac{mc^2(\nu_{obs}-\nu)^2}{2\nu^2k_BT}\right\}$$

When written in standard form for a Gaussian:

$$exp\left\{-\frac{(\nu-\nu_0)^2}{2\sigma^2}\right\}$$

s is called the variance.

$$\sigma = \frac{\nu}{c} \sqrt{\frac{k_B T}{m}}$$

Full-width at half maximum for a Gaussian function

How does the variance, σ relate to the width of the band? To examine this we can calculate the full-width at half maximum (FWHM). We set the value of a Gaussian equal to 1/2.

$$exp\left\{-\frac{(\nu-\nu_0)^2}{2\sigma^2}\right\} = \frac{1}{2}$$

$$\frac{(v - v_0)^2}{2\sigma^2} = \ln(2)$$

$$(\nu - \nu_0) = \sigma \sqrt{2ln(2)}$$

$$FWHM = 2(\nu - \nu_0) = 2\sigma\sqrt{2ln(2)}$$