Absorbtivities $\varepsilon_{\lambda 1}$, $\varepsilon_{\lambda 2}$, $\varepsilon_{\lambda 3}$, $\varepsilon_{\lambda 4}$ are determined from calibration curves. $A_{\lambda 1}$, $A_{\lambda 2}$, $A_{\lambda 3}$, $A_{\lambda 4}$ are measured. [Cu] and [Nd] are concentrations of the Cu and Nd in the unknown solution b=1cm

 $\begin{aligned} \mathsf{A}_{\lambda 1} &= \varepsilon_{\lambda 1,\mathsf{Cu}} \mathsf{b}[\mathsf{Cu}] + \varepsilon_{\lambda 1,\mathsf{Nd}} \mathsf{b}[\mathsf{Nd}] + \mathsf{error} \\ \mathsf{A}_{\lambda 2} &= \varepsilon_{\lambda 2,\mathsf{Cu}} \mathsf{b}[\mathsf{Cu}] + \varepsilon_{\lambda 2,\mathsf{Nd}} \mathsf{b}[\mathsf{Nd}] + \mathsf{error} \\ \mathsf{A}_{\lambda 3} &= \varepsilon_{\lambda 3,\mathsf{Cu}} \mathsf{b}[\mathsf{Cu}] + \varepsilon_{\lambda 3,\mathsf{Nd}} \mathsf{b}[\mathsf{Nd}] + \mathsf{error} \\ \mathsf{A}_{\lambda 4} &= \varepsilon_{\lambda 4,\mathsf{Cu}} \mathsf{b}[\mathsf{Cu}] + \varepsilon_{\lambda 4,\mathsf{Nd}} \mathsf{b}[\mathsf{Nd}] + \mathsf{error} \end{aligned}$

it can be shown that putting the derivatives of SS equal zero results in the following matrix (*minus* the error term):

$A_{\lambda 1}$		ε _{λ1,Cu}	$\epsilon_{\lambda 1, Nd}$	
$A_{\lambda 2}$	=	ε _{λ2,Cu}	$\epsilon_{\lambda 2, Nd}$	[Cu]
$A_{\lambda 3}$		ε _{λ3,Cu}	$\epsilon_{\lambda 3, Nd}$	[Nd]
$A_{\lambda 4}$		$\epsilon_{\lambda4,Cu}$	$\epsilon_{\lambda 4, Nd}$	

$A = \epsilon . C$

The only unknown is matrix C which contains the parameters (concentrations) we wish to estimate: [Cu] and [Nd]. The **A** and ε matrices are known. Solving for C now requires matrix algebra:

 $(\varepsilon^{\mathsf{T}}\varepsilon)^{-1}\varepsilon^{\mathsf{T}}\mathsf{A}=\mathsf{C}$

The LINEST function in Excel is the easiest way of doing regression:

The LINEST function in Excel is the easiest way of doing regression:

X-range: Make two columns with the independent variables (one column with ε [Cu] values at the 4 wavelengths and one column with the ε [Nd] values at the 4 different wavelengths)

Y range: Make a column with the measured dependent variable (Absorbance of the unknown mixture at the 4 wavelengths)

Select a range of 5x3 cells and type:

LINEST(Y-range, X-range, 1, 1) then Ctrl+Shift+Enter (LINEST is an *array* function. Such functions need to be activated using Ctrl+Shift+Enter).

Linest gives the following numbers: (see page 31 in your lab manual)

Note: the parameters run from right to left, i.e. if the X range lists the ε_{Cu} in the first column, Then the [Cu] will be the second column (slope 1) in the Linest output:

slope2	slope1	intercept
s _e of slope2	s _e of slope1	s _e of intercept
R ²	RMSE	
F	df	
SS(reg)	SS(resid)	

Example Excel:

	Α	В	С	D
1	λ (nm)	εNd	εCu	Α
2				
3	523	0.01	0.0285	0.0551
4	577	5.703	0.0602	0.1359
5	660	5.9	3.14	0.0861
6	743	5.703	9.68	0.4024

Using: LINEST(D3:D6,B3:C6,1,1):

0.0312065	0.00277835	0.05713867
0.0155653	0.02454436	0.10867783
0.84381957	0.10852718	#N/A
2.7014254	1	#N/A
0.06363558	0.01177815	#N/A

Since ε_{Nd} listed in the first of the two X columns, the [Nd] is the second column in Linest:

NOTE: I just used absorptivity values from a previous student report. Not sure about the quality of the data. In this specific example, the results are: [Cu] = 0.03 (0.02)Mand $[Nd] = 0.00_3(0.02) M$ (basically zero [Nd] since error is larger than the concentration)