Absorbtivities $\varepsilon_{\lambda 1}, \varepsilon_{\lambda 2}, \varepsilon_{\lambda 3}, \varepsilon_{\lambda 4}$ are determined from calibration curves.
$\mathrm{A}_{\lambda 1}, \mathrm{~A}_{\lambda 2}, \mathrm{~A}_{\lambda 3}, \mathrm{~A}_{\lambda 4}$ are measured.
$[\mathrm{Cu}]$ and $[\mathrm{Nd}]$ are concentrations of the Cu and Nd in the unknown solution $\mathrm{b}=1 \mathrm{~cm}$
$\mathrm{A}_{\lambda 1}=\varepsilon_{\lambda 1, \mathrm{Cu}} \mathrm{b}[\mathrm{Cu}]+\varepsilon_{\lambda 1, \mathrm{Nd}} \mathrm{b}[\mathrm{Nd}]+$ error
$\mathrm{A}_{\lambda 2}=\varepsilon_{\lambda 2, \mathrm{cu}} \mathrm{b}[\mathrm{Cu}]+\varepsilon_{\lambda 2, \mathrm{Nd}} \mathrm{b}[\mathrm{Nd}]+$ error
$\mathrm{A}_{\lambda 3}=\varepsilon_{\lambda 3, \mathrm{Cu}} \mathrm{b}[\mathrm{Cu}]+\varepsilon_{\lambda 3, \mathrm{Nd}} \mathrm{b}[\mathrm{Nd}]+$ error
$\mathrm{A}_{\lambda 4}=\varepsilon_{\lambda 4, \mathrm{cu}} \mathrm{b}[\mathrm{Cu}]+\varepsilon_{\lambda 4, \mathrm{Nd}} \mathrm{b}[\mathrm{Nd}]+$ error
it can be shown that putting the derivatives of SS equal zero results in the following matrix (minus the error term):
$\left(\begin{array}{l}\mathrm{A}_{\lambda 1} \\ \mathrm{~A}_{\lambda 2} \\ \mathrm{~A}_{\lambda 3} \\ \mathrm{~A}_{\lambda 4}\end{array}\right)=\left(\begin{array}{ll}\varepsilon_{\lambda 1, \mathrm{Cu}} & \varepsilon_{\lambda 1, \mathrm{Nd}} \\ \varepsilon_{\lambda 2, \mathrm{Cu}} & \varepsilon_{\lambda 2, \mathrm{Nd}} \\ \varepsilon_{\lambda 3, \mathrm{cu}} & \varepsilon_{\lambda 3, \mathrm{Nd}} \\ \varepsilon_{\lambda 4, \mathrm{Cu}} & \varepsilon_{\lambda 4, \mathrm{Nd}}\end{array}\right)\left[\begin{array}{c}{[\mathrm{Cu}]} \\ {[\mathrm{Nd}]}\end{array}\right]$
$A=\varepsilon$. C
The only unknown is matrix C which contains the parameters (concentrations) we wish to estimate: [Cu] and [Nd]. The \mathbf{A} and ε matrices are known. Solving for \mathbf{C} now requires matrix algebra:
$\left(\varepsilon^{\top} \varepsilon\right)^{-1} \varepsilon^{\top} A=C$

The LINEST function in Excel is the easiest way of doing regression:

The LINEST function in Excel is the easiest way of doing regression:

X-range: Make two columns with the independent variables (one column with $\varepsilon[\mathrm{Cu}]$ values at the 4 wavelengths and one column with the $\varepsilon[\mathrm{Nd}]$ values at the 4 different wavelengths)

Y range: Make a column with the measured dependent variable (Absorbance of the unknown mixture at the 4 wavelengths)

Select a range of 5×3 cells and type:
LINEST(Y-range, X-range, 1, 1) then Ctrl+Shift+Enter (LINEST is an array function. Such functions need to be activated using Ctrl+Shift+Enter).

Linest gives the following numbers: (see page 31 in your lab manual)
Note: the parameters run from right to left, i.e. if the X range lists the $\varepsilon_{\mathrm{Cu}}$ in the first column, Then the [Cu] will be the second column (slope 1) in the Linest output:

slope2	slope1	intercept
S_{e} of slope2	S_{e} of slope1	S_{e} of intercept
R^{2}	RMSE	
F	df	
SS(reg)	SS(resid)	

Example Excel:

	A		B		C	
C						
1	$\lambda(\mathrm{~nm})$	ENd		ECu		A
2						
3	523	0.01	0.0285	0.0551		
4	577	5.703	0.0602	0.1359		
5	660	5.9	3.14	0.0861		
6		743	5.703	9.68	0.4024	

Using: LINEST(D3:D6,B3:C6,1,1):

0.0312065	0.00277835	0.05713867
0.0155653	0.02454436	0.10867783
0.84381957	0.10852718	IN/A
2.7014254	1	IN/A
0.06363558	0.01177815	IN/A

Since $\varepsilon_{\text {Nd }}$ listed in the first of the two X columns, the [Nd] is the second column in Linest:

NOTE: I just used absorptivity values from a previous student report. Not sure about the quality of the data. In this specific example, the results are: $[\mathrm{Cu}]=0.03(0.02) \mathrm{M}$ and $[\mathrm{Nd}]=0.00_{3}(0.02) \mathrm{M}$ (basically zero $[\mathrm{Nd}]$ since error is larger than the concentration)

