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The Sum of Squares Function

Ordinary Least Squares



Definition of the Sum of Squares Function
Start with a set of replicate values xi and make a guess for the mean  of the 
distribution: a. 
We can now compute the deviations (residual) i = xi –a.
We take the squares and add them up: This produces the sum of squares

If our guess is poor then SS will be large. A good guess will give a small value 
of SS. By minimizing the SS function we will find the least squares estimate
(LSE)for the average aLSE. We can easily find the LSE value for a by setting the 
derivative d(SS)/da =0
We find:



Definition of the mean

We can divide both sides by 2 to give:

In other words the sample average (or mean) indeed minimizes the sum of 
squares. The median by contrast does not have this nice property. 



Ordinary Least Squares

Linear data are no longer pure replicates, because we vary the value of x. 
For linear data we guess the slope b and intercept a, calculate deviations and 
SS. To minimize SS we must now take two derivatives (dSS/da and dSS/db) and 
put them zero simultaneously. Matrix notation is a great help when dealing with 
this kind of problem. We can write the above model as:

Or:



Ordinary Least Squares

The X matrix records for what values of x we choose to take a 
measurement. We generally assume that there is no error in these set 
points or independent variables. Y contains the dependent variable, the 
measured values. The matrix  contains the random errors that we 
assume to be a normal distribution. The matrix  contains the parameters 
we wish to estimate, the slope b and intercept a of our line. 
Finding the LSE for  can be done quite elegantly in matrix notation. 



Ordinary Least Squares

Notice that the only unknowns left are in . The X and Y matrices are 
known because they are either set or measured. Solving for  now requires 
some simple matrix algebra:

The regression formula minimizes the sum of squares for a great many 
different models: point, line, circle, parabola or polynomial. It is one of the 
most powerful equations in statistics. Let’s first look at a simple straight line. 

To construct the X matrix we take the derivative with respect to x of 
both of the variables in the equation for a line.  



Suppose there are n data points {(xi, yi), i = 1, ..., n}. The function that describes

x and y is:

𝑦𝑖 = 𝛼 + 𝛽𝑥𝑖 + 𝜀𝑖

The goal is to find the equation of the straight line 𝑦 = 𝛼 + 𝛽𝑥

which would provide a "best" fit for the data points. In the linear least squares 

approach, 𝛼 (the y-intercept) and 𝛽 (the slope) solve the following minimization 

problem:

𝐹𝑖𝑛𝑑min𝑄(𝛼, 𝛽)

which can be done using the least squares criterion by minimizing
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Simple linear least squares



By expanding the quadratic expression in α and β, and taking derivatives with 

respect to α and β in order to minimize the objective function Q we find:
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After some algebra 
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Slope, intercept as least squares parameters



The calculated values using the regression model are called f

𝑓 = ො𝛼 + መ𝛽𝑥

The mean of the observed data is defined as:
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The criterion of a good fit will be to compare the difference between the actual 
data and the mean to the calculated model and the mean.

The difference between the model and the data



The variability of the data set can be measured using three sum of squares 

(SS) formulas:

1. The total sum of squares (proportional to the variance of the data):
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2. The regression sum of squares:
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3. The sum of squares of residuals: 
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Sums of squares formulas



Correlation coefficient
The most general definition of the coefficient of determination is
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