# Linear Regression using Excel 

Plotting data to define a line
Using LINEST
Matrix formulation

## Using Excel to calculate fits to a line

The simplest and least informative way to use Excel to obtain a linear regression is to plot the function and to request a trendline. This calculation is actually the same as the formal calculation of ordinary least squares, but the result does not provide the user with all of the information regarding the errors. For our purposes this is not an adequate way to fit the data.

After seeing what the trendline looks like we will examine ordinary least squares in terms of the algebraic solution to reinforce our understanding. Then we delve into the meaning of LINEST, which is a more informative way to use Excel for linear regression.


## Chart $1 \quad{ }^{\prime} \quad \times \quad \times \quad f_{x}$



Format Trendline
Trendline Options
a) 1 Ill

| - Exponential |  |  |
| :---: | :---: | :---: |
| - Linear |  |  |
| Logarithmic |  |  |
| O Polynomial | Order | 2 |
| O Power |  |  |
| Moving Average | Period | 2 |

Trendline Name

- Automatic Linear (Series1)

O Custom


Forecast

| Forward | 0.0 |
| :--- | :--- |
| period |  |
| Backward | 0.0 |
| period |  |
| $\square$ Set Intercept |  |

$\checkmark$ Display Equation on chart
$\checkmark$ Display R -squared value on chart


## Using Excel to calculate fits to a line

The LINEST function is one way to obtain a linear regression in Excel. This is shown in the next slide.


## Using Excel to calculate fits to a line

The LINEST function is one way to obtain a linear regression in Excel.
We can examine the mechanics of LINEST by creating the matrices indicated by the analysis shown earlier.

$$
\left(X^{T} X\right)^{-1} X^{T} Y=\beta_{L S E}
$$



（3）开始 插入 页面布局 公式 数据 畁阅 视图 Acrobat





| XTX＿1 |  | （0 | $f_{x} \mid\{=$ MINVERSE（XTX）$\}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | A | B | C | D | E | F |  |
| 1 | 1 | 0 | 0.5 |  |  |  |  |
| 2 | 1 | 1 | 0.56 |  |  |  |  |
| 3 | 1 | 2 | 0.72 |  |  |  |  |
| 4 | 1 | 3 | 0.79 |  |  |  |  |
| 5 | 1 | 4 | 0.93 |  |  |  |  |
| 6 | 1 | 5 | 1.04 |  |  |  |  |
| 7 | 1 | 6 | 1.09 |  |  |  |  |
| 8 | 1 | 7 | 1.1 |  |  |  |  |
| 9 | 1 | 8 | 1.22 |  |  |  |  |
| 10 | 1 | 9 | 1.27 |  |  |  |  |
| 11 |  |  |  |  |  |  |  |
| 12 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| 13 | 0 | 1 | 2 | 3 | 4 | 5 |  |
| 14 |  |  |  |  |  |  |  |
| 15 | 10 | 45 |  |  |  |  |  |
| 16 | 45 | 285 |  |  |  |  |  |
| 17 |  |  |  |  |  |  |  |
| 18 | 9.22 |  |  |  |  |  |  |
| 19 | 48.72 |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  |
| 21 | 0.345455 | 05455 |  |  |  |  |  |
| 22 | －0．05455 | 12121 |  | $\mathrm{Cu}$ | te |  | -1 |



