Analysis discrete distributions

The multinomial distribution

The multinomial distribution

If there are more than two possible states we can use a multinomial distribution. In this distribution we can define the total population as N and the number of objects in each state as $\mathrm{n}_{1}, \mathrm{n}_{2}$ etc. For example, for N dice we have

$$
F=\frac{N!}{n_{1}!n_{2}!n_{3}!n_{4}!n_{5}!n_{6}!}
$$

If we take the game Yahtzee that we play with 5 dice $N=5$. Then if we cast the dice and we obtain 2 dice with 1 and 3 dice showing 2 , we have a full house. In this case:

$$
F=\frac{5!}{2!3!0!0!0!0!}
$$

Thus, $F=10$. The combinatoric in this case is $C=6^{5}=7776$. Thus, $P=F / C=10 / 7776=$ 0.001 . There are actually 12 Full houses so the total probability of obtaining a full house is around 1%. We can apply this same reasoning to any cast of the dice.

