
Chapter 1. The harmonic oscillator 

 

1.1 An oscillating dipole moment leads to infrared absorption 

The permanent dipole moment of a molecule oscillates about an equilibrium value as the 

molecule vibrates.  Thus, the dipole moment depends on the nuclear coordinate Q. where  is the 

dipole operator. 

 

𝜇(𝑄) = 𝜇0 + (
𝜕𝜇

𝜕𝑄
)𝑄 + ⋯ 

            (1.1.1) 

Rotational transitions arise from the rotation of the permanent dipole moment that can 

interact with an electromagnetic field in the microwave region of the spectrum.  Here the 

transition moment interacts with electromagnetic radiation because of the oscillation in the 

dipole itself as shown in Figure 1.1. 

 
Figure 1.1 Depiction of oscillating dipole moment. 

 

The series expansion is use since it represents the change in the dipole moment.  We have only 

used the first term since that suffices to express the main effect of the change in dipole moment 

as the molecules vibrates.  Although Figure 1.1 shows a diatomic molecule the same principle 

applies to the normal modes of polyatomic molecules.  An oscillating dipole moment can lead to 

absorption of infrared radiation.  However, for absorption to occur there must be a dipole 

moment. 

 

1.2 Classical description of vibration 

 In classical physics vibration is treated as harmonic motion.  The model of a mass on a 

spring. Figure 1.2A shows the model of a mass attached to a wall (or object of large mass).  Here 

only the mass of the object affects the frequency.  Figure 1.2B shows the situation for a diatomic 

molecule or any spring with two masses attached.  In this case, it is the reduced mass that affects 

the frequency.  In the classical picture the assumption of a Hooke’s law spring gives a linear 

restoring force: 



 

𝐹 = −𝑘𝑄 

            (1.2.1) 

Since the potential is related to the force as 

 

𝐹 = −
𝑑𝑉

𝑑𝑄
 

            (1.2.2) 

We can see that the classical potential energy is: 

𝑉(𝑄) =
𝑘

2
𝑄2 

            (1.2.3) 

 

 
Figure 1.2. Classical depiction of harmonic motion. 

 

A solution to the classical equation of motion in Figure 1.2 is: 

 

𝑄(𝑡) = 𝑄0𝑐𝑜𝑠(𝜔𝑡) 

            (1.2.4) 

 

−
𝜇

2
𝜔2𝑄0𝑐𝑜𝑠(𝜔𝑡) = −

𝑘

2
𝑄0𝑐𝑜𝑠(𝜔𝑡) 

Therefore, 



𝜔 = √
𝑘

𝜇
 

            (1.2.5) 

 

The quantity, , is the angular frequency.  The frequency in Hertz, , is more useful.  The 

relationship between them is: 

 

𝜔 = 2𝜋𝜈 

            (1.2.6) 

Thus, we can write  

 

𝜈(𝑠−1) =
1

2𝜋
√

𝑘

𝜇
 

            (1.2.7) 

We can write the result in cm-1 by dividing by c (in units of cm/s). 

 

𝜈(𝑐𝑚−1) =
1

2𝜋𝑐
√

𝑘

𝜇
 

            (1.2.8) 

 

1.3 Quantum mechanical model of vibrational motion 

           Molecular bonds have a potential energy surface (PES) such as that shown in Figure 1.3.   

 
Figure 1.3. Comparison of a realistic bonding potential energy surface calculated for the 

hydrogen molecule ion and a harmonic potential energy surface approximation. 

 

The potential energy surface has asymmetric form and is not readily adapted to quantum 

chemical calculation of the vibrational frequency.  To obtain a model that can readily be 

calculated we employ the harmonic approximation.  The inspiration for this approach from the 



classical harmonic oscillator where the potential is rigorously harmonic (in the limit of small 

displacements where Hooke’s law is valid).  We expand the true potential V(Q) in a series 

expansion as follows: 

 

𝑉(𝑄) = 𝑉(𝑄0) + (
𝜕𝑉

𝜕𝑄
) (𝑄 − 𝑄0) +

1

2
(
𝜕2𝑉

𝜕𝑄2
) (𝑄 − 𝑄0)

2 + ⋯ 

            (1.3.1) 

The first term, 𝑉(𝑄0)is an offset in energy and does not affect either the shape of the PES.  We 

can also simplify this expression by shifted the coordinate system so that 𝑄0 = 0.The second 

term is zero at the equilibrium position where we are most interested in expanding the potential 

energy.  The first term that has information regarding the potential energy is the quadratic term.  

The second derivative (d2V/dQ2) is the curvature of the potential energy surface at the 

equilibrium position.  This is equivalent to the force constant, k, in the classical model.   

 

𝑘 = (
𝜕2𝑉

𝜕𝑄2
) 

            (1.3.2) 

Therefore, we can use a harmonic potential in the Schrödinger equation to calculate the wave 

functions and energies of the vibrations of molecules. 

 

−
ℏ2

2𝜇

𝜕2

𝜕𝑄2
𝜒 +

𝑘

2
𝑄2𝜒 = 𝐸𝜒 

            (1.3.3) 

Making the definitions, 

y = √αQ   where α =
μω

ℏ
 and ϵ =

2E

ℏω
 

      (1.3.4) 

Noting that  

𝜕2

𝜕𝑄2
=

μω

ℏ

𝜕2

𝜕𝑦2
 

      (1.3.5) 

 

we can write Eqn. 1.3.3 as 

 

−
𝜕2

𝜕𝑦2
𝜒 + 𝑦2𝜒 = ϵ𝜒 

      (1.3.6) 

One approach to solving such an equation is to find an asymptotic solution, 𝑔(𝑦) by assuming 

that ϵ ≈ 0. Then, we can assume that the true solution is the product of 𝑔(𝑦) and a function, 



𝑓(𝑦), which can be a series expansion that will give different solutions for various values of ϵ.  

The asymptotic equation is, 

  

𝜕2

𝜕𝑦2
𝜒 ≈ 𝑦2𝜒 

      (1.3.7) 

A Gaussian function is an appropriate trial solution for this equation, 

 

𝜒𝑡𝑟𝑖𝑎𝑙 = 𝑒−𝑦2/2 

      (1.3.8) 

 

𝜕2

𝜕𝑦2
𝜒𝑡𝑟𝑖𝑎𝑙 = (𝑦2 − 1)𝑒−𝑦2/2 

      (1.3.9) 

For large values of y we have 

 

𝜕2

𝜕𝑦2
𝑒−𝑦2/2 ≈ 𝑦2𝑒−𝑦2/2 

      (1.3.10) 

 

which solves Eqn. 1.3.7. Thus, our trial solution for the general equation is 

 

𝜒𝑡𝑟𝑖𝑎𝑙 = 𝑓(𝑦)𝑒−𝑦2/2 

      (1.3.11) 

In order to substitute this equation into Eqn. 1.3.6 we need the derivatives. We have 

 

𝜕𝜒𝑡𝑟𝑖𝑎𝑙

𝜕𝑦
= (

𝜕𝑓

𝜕𝑦
− 𝑓𝑦) 𝑒−𝑦2/2 

 and 

𝜕2𝜒𝑡𝑟𝑖𝑎𝑙

𝜕𝑦2
= (

𝜕2𝑓

𝜕𝑦2
− 2𝑦

𝜕𝑓

𝜕𝑦
+ (𝑦2 − 1)𝑓)𝑒−𝑦2/2 

      (1.3.12) 

 

Substituting this into Eqn. 1.3.6 gives us  

 

𝜕2𝑓

𝜕𝑦2
− 2𝑦

𝜕𝑓

𝜕𝑦
+ (ϵ − 1)𝑓 = 0 

      (1.3.13) 

If we assume that 𝑓(𝑦) has the form of a series, 

 



𝑓(𝑦) = ∑ 𝑎𝑛𝑦
𝑛

∞

𝑛=0

 

      (1.3.14) 

Then the derivatives of 𝑓(𝑦) are given by  

 

𝜕𝑓

𝜕𝑦
= ∑ 𝑛𝑎𝑛𝑦

𝑛−1

∞

𝑛=0

 

 

𝜕2𝑓

𝜕𝑦2
= ∑ 𝑛(𝑛 − 1)𝑎𝑛𝑦

𝑛−2

∞

𝑛=0

 

 

= ∑(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2𝑦
𝑛

∞

𝑛=0

 

      (1.3.15) 

Substituting these series into Eqn. 1.3.13 

 

∑(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2𝑦
𝑛

∞

𝑛=0

− 2𝑦 ∑ 𝑛𝑎𝑛𝑦
𝑛−1

∞

𝑛=0

+ (ϵ − 1) ∑ 𝑎𝑛𝑦
𝑛

∞

𝑛=0

= 0 

  

(1.3.16) 

 

∑((𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 + (ϵ − 1 − 2𝑛)𝑎𝑛)𝑦
𝑛

∞

𝑛=0

= 0 

  

(1.3.17) 

Once we choose a value for ϵ there is one and only one sequence of coefficients, 𝑎𝑛, that 

defines the function 𝑓(𝑦). Therefore, the sum can be zero for all values of 𝑦 if and only if 

the coefficient of each power of 𝑦 vanishes separately. Thus, 

 

(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 + (ϵ − 1 − 2𝑛)𝑎𝑛 = 0 

  

(1.3.18) 

and  

 

𝑎𝑛+2 =
1 + 2𝑛 − ϵ

(𝑛 + 1)(𝑛 + 2)
𝑎𝑛 

      (1.3.19) 



Rather than finding an infinite series (which would actually be divergent in this case!) we will 

assume that the solution is a polynomial that terminates after a finite number of terms, n.  The 

condition for the series to terminate is  

𝑎𝑛+2 = 0 

   (1.3.20) 

which implies 

 

1 + 2𝑛 − ϵ = 0 

or 

ϵ = 2n + 1 

   (1.3.21) 

Therefore, from Eqn. 1.3.4 we have 

 

E =
1

2
(2n + 1)ℏω = (n +

1

2
)ℏω 

   (1.3.22) 

Using the definition of α in Eqn. 1.3.4, the solutions have the form: 

 

𝜒0 = (
𝛼

𝜋
)
1/4

𝑒−𝛼𝑄2/2 

 

𝜒1 = (
𝛼

𝜋
)

1
4
√2𝛼𝑄𝑒−

𝛼𝑄2

2  

 

𝜒2 = (
𝛼

𝜋
)
1/4 (4𝛼𝑄2 − 2)

2√2
𝑒−𝛼𝑄2/2 

           

 (1.3.23) 

in which the polynomials are known as Hermite polynomials.  We can obtain the Hermite 

polynomials using a generating function, 

 

Hn(y) = (−1)ney2/2
dn

dyn
e−y2/2 

   (1.3.24) 

We will use the quantum number v for the quantum harmonic oscillator. Thus, the definitions of 

the energy become, 

𝐸𝑣 = (𝑣 +
1

2
) ℏ𝜔 

           

 (1.3.25) 



The energy levels are evenly spaced starting a 1/2h.  The significance of the offset from zero is 

a consequence of the Uncertainty principle.  Vibrations are present even at absolute zero in 

crystalline substances.  The nuclear motion in crystals can never cease since that would mean 

that the positions would be precisely located and the momentum would be precisely known 

because it would be zero.  For this reason 1/2h is known as the zero-point energy and the 

motion in that state is the zero-point motion.  Note that the energy levels are evenly spaced above 

the zero-point level, so that there is only one observed vibrational transition even if higher 

vibrational states are thermally occupied.   

The form of the wave functions is Gaussian, but with a polynomial factor that gives rise 

to the nodes in the wave functions that can be seen in Figure 1.4.. 

 

 
Figure 1.4. Graphical representation of the first three wave functions  

of the solution to the harmonic oscillator. 

 

While we have not derived the solutions (Eqns. 1.3.4), we can test them for consistency by 

substituting into the Schrödinger equation, Eqn. 1.3.3.  We will use 0 as an example.  Leaving 

out the normalization constant, the second derivative is 

 

𝜕

𝜕𝑄
𝑒−

𝛼𝑄2

2 = −𝛼𝑄𝑒−
𝛼𝑄2

2  

𝜕

𝜕𝑄
−𝛼𝑄𝑒−𝛼𝑄2/2 = −𝛼𝑒−𝛼𝑄2/2 + 𝛼2𝑄2𝑒−

𝛼𝑄2

2 = (𝛼2𝑄2 − 𝛼)𝑒−𝛼𝑄2/2  

Now we substitute that result into the Schrödinger equation.  We do not include the 

normalization constant here since it cancels out in each term. 

 

−
ℏ2

2𝜇
(𝛼2𝑄2 − 𝛼)𝑒−𝛼𝑄2/2 +

𝑘

2
𝑄2𝑒−𝛼𝑄2/2 = 𝐸𝑒−𝛼𝑄2/2  

So 

 

−
ℏ2

2𝜇
(
𝜇𝑘

ℏ2
𝑄2 −

√𝜇𝑘

ℏ
) +

𝑘

2
𝑄2 = 𝐸 

and 



𝐸 = 
ℏ

2
√

𝑘

𝜇
=

1

2
ℏ𝜔 

           

 (1.3.26) 

We can see that 0 is a solution and gives the zero-point energy as the eigenvalue.  As we have 

seen for other quantum mechanical solutions, the harmonic oscillator wave functions are 

orthogonal.  They have been normalized using the properties of Gaussian integrals.  

 

1.4. Orthonormality of harmonic oscillator wave functions 

        Since the harmonic oscillator basis functions are orthogonal, integrals of the type, 

 

∫ 𝜒𝑣′𝜒𝑣𝑑𝑄

∞

−∞

= 𝛿𝑣𝑣′ 

            (1.4.1) 

Are zero unless v = v’.  That is the meaning of the Kroenecker delta. 

 

𝛿𝑣𝑣′ = {
0 𝑖𝑓 𝑣 ≠ 𝑣′

1 𝑖𝑓 𝑣 = 𝑣′} 

            (1.4.2) 

1.5 Normal modes of vibration 

1.1.1 Vibrational degrees of freedom 

       In a non-linear polyatomic molecule with N atoms, there are 3N – 6 vibrational modes.  

Each normal mode has an associated solution to the harmonic oscillator model.  By definition, 

the normal modes themselves are orthogonal so each one contributes independently to motion 

and each vibrational frequency can be observed by infrared spectroscopy, if the difference dipole 

moment is sufficiently large.   

A normal mode is a collective motion of the molecule.  At the minimum of the motion all 

of the nuclei pass in each mode through the equilibrium position of the molecule.  The extent of 

motion may be different for different nuclei, but they are still in-phase.  The importance of 

normal modes is that this method of calculation permits application of the harmonic oscillator 

model to all of the modes of a polyatomic molecule.  This means that the method is generally 

applicable. 

           We shall illustrate the normal mode concept with two examples, H2O and CO2.  H2O has 

3 atoms and 9 total degrees freedom. H2O is a non-linear molecule so it has 3 translations and 3 

rotations leaving 3 vibrational modes.  These are shown in Figure 1.5A.  Since CO2 is linear 

molecule, it has only 2 rotational degrees of freedom.  Thus, it has two orthogonal bending 

modes shown in Figure 1.5B. 

 

 



 
Figure 1.5. Normal modes of vibration  

A.) the 3 modes of vibration for H2O are shown.  

B.) the 4 modes of vibration for CO2 are shown. 

 

1.1.2 The eigenvalue approach to normal modes 

Polyatomic molecules can be considered as a set of coupled harmonic oscillators.  

Although this is a classical model we shall see that it can used to interpret spectra using the 

quantum-mechanical harmonic oscillator wave functions.  The collective motions of the atoms in 

a molecule are decomposed into normal modes of vibration within the harmonic approximation.  

The normal modes are mutually orthogonal. That is they represent linearly independent motions 

of the nuclei about the center-of-mass of the molecule.   

1.1.2.1 Kinetic and potential energy in Cartesian coordinates 

 Our starting point is to consider the potential and kinetic energy in Cartesian coordinates: 

𝑇 =
1

2
∑𝑚𝑖 {(

𝜕𝑥𝑖

𝜕𝑡
)
2

+ (
𝜕𝑦𝑖

𝜕𝑡
)
2

+ (
𝜕𝑧𝑖

𝜕𝑡
)
2

}

𝑁

𝑖=1

 

𝑉 = 𝑉0 + ∑{(
𝜕𝑉

𝜕𝑥𝑖
) 𝑥𝑖 + (

𝜕𝑉

𝜕𝑦𝑖
) 𝑦𝑖 + (

𝜕𝑉

𝜕𝑧𝑖
) 𝑧𝑖}

𝑁

𝑖=1

 

+
1

2
∑{(

𝜕2𝑉

𝜕𝑥𝑖
2) 𝑥𝑖

2 + (
𝜕2𝑉

𝜕𝑦𝑖
2)𝑦𝑖

2 + (
𝜕2𝑉

𝜕𝑧𝑖
2) 𝑧𝑖

2}

𝑁

𝑖=1

 

+
1

2
∑ {(

𝜕2𝑉

𝜕𝑥𝑖𝜕𝑦𝑗
)𝑥𝑖𝑦𝑗 + (

𝜕2𝑉

𝜕𝑦𝑖𝜕𝑧𝑗
)𝑦𝑖𝑧𝑗 + (

𝜕2𝑉

𝜕𝑧𝑖𝜕𝑥𝑗
) 𝑧𝑖𝑥𝑗}

𝑁

𝑖,𝑗=1

 

 



We will assume that the potential energy is expanded about the equilibrium position and thus the 

first derivative terms are equal to zero.  The term V0 is an arbitrary energy offset and it will also 

be set equal to zero.   

 

1.1.2.2 Kinetic and potential energy in mass-weighted Cartesian coordinates 

These expressions can be greatly simplified using mass-weighted coordinates: 

 

𝑇 =
1

2
∑(

𝜕𝜂𝑖

𝜕𝑡
)
23𝑁

𝑖=1

 

 

𝑉 =
1

2
∑ 𝑎𝑖𝑗𝜂𝑖𝜂𝑗

3𝑁

𝑖,𝑗=1

 

where 

𝜂𝑖 = √𝑚𝑖𝑥𝑖 

 

𝑎𝑖𝑗 = (
𝜕2𝑉

𝜕𝜂𝑖𝜕𝜂𝑗
) 

The equations of motion for the collection of atoms in the molecule are: 

 

𝜕2𝜂𝑖

𝜕𝑡2
+ ∑𝑎𝑖𝑗𝜂𝑗

3𝑁

𝑗=1

= 0 

The trial solutions have the form: 

𝜂𝑖 = 𝜂𝑖
0𝑠𝑖𝑛(√𝜆𝑡 + 𝛿) 

 

𝜕𝜂𝑖

𝜕𝑡
= √𝜆𝜂𝑖

0
𝑐𝑜𝑠(√𝜆𝑡 + 𝛿) 

 

𝜕2𝜂𝑖

𝜕𝑡2
= −𝜆𝜂𝑖

0𝑠𝑖𝑛(√𝜆𝑡 + 𝛿) 

 

 

When substituted into the equations of motion we have: 

 

−𝜆𝜂𝑖
0 + ∑𝑎𝑖𝑗𝜂𝑗

0

3𝑁

𝑗=1

= 0 

 

for i = 1 to 3N.  This equation is a matrix equation 



 

(𝑨 − 𝜆𝑰)𝜼𝟎 = 0 

where I is the identity matrix.  The general form of the matrix equations is: 

 

(|

𝑎11 𝑎12 𝑎13 …
𝑎21 𝑎22 𝑎23 …
𝑎31 𝑎32 𝑎33 …

…

| − |

𝜆1 0 0…
0 𝜆2 0…
0 0 𝜆3…

|)(

𝜂1
0

𝜂2
0

𝜂3
0

…

) = 0 

 

There is a trivial solution in which all of the terms in the 0 column vector are zero.  The 

interesting solution, however, is the solution for which the determinant of the matrix |A - I| is 

equal to zero. 

 

1.1.2.3 Transformation to normal coordinates 

The potential energy is written in the general form: 

 

𝑉 =
1

2
(𝜂1 𝜂2 𝜂3 …)(

𝑎11 𝑎12 𝑎13 …
𝑎21 𝑎22 𝑎23 …
𝑎31 𝑎32 𝑎33 …

…

)(

𝜂1

𝜂2

𝜂3…

) 

or in matrix form as 

𝑉 =
1

2
𝜂𝑇𝑨𝜂 

 

where T is the transpose of .  A is a symmetric matrix, but it is not diagonal.  In fact, the 

procedure of finding det |A - I| is a matrix diagonalization of A.  To perform this 

diagonalization we transform to normal coordinates Qi where: 

 

𝑄𝑖 = ∑ ℓ𝑖𝑘𝜂𝑘

3𝑁

𝑘=1

 

 

for i = 1 … 3N.  Although the sum extends to include all 3N degrees of freedom, only 3N-6 or 

3N-5 of these are vibrational modes for non-linear or linear molecules, respectively.  In matrix 

form Q = LT.  We can write this in matrix form as follows. 

 

(

𝑄1

𝑄2

𝑄3…

) = (

ℓ11 ℓ12 ℓ13 …
ℓ21 ℓ22 ℓ23 …
ℓ31 ℓ32 ℓ33 …

…

)(

𝜂1

𝜂2

𝜂3…

) 

 

where LT is the transpose of L.  L is a unitary matrix; its inverse is equal to its transpose L-1 = 

LT.  Because L is unitary Q = LT = L-1 and  = LQ.  The inverse transformation is: 



 

(

𝜂1

𝜂2

𝜂3…

) = (

ℓ11 ℓ21 ℓ31 …
ℓ12 ℓ22 ℓ32 …
ℓ13 ℓ23 ℓ33 …

…

)(

𝑄1

𝑄2

𝑄3…

) 

 

This means that we can calculate the total displacements in Cartesian coordinates from 

 

𝜂𝑘 = ∑ℓ′𝑖𝑘𝑄𝑖

3𝑁

𝑖=1

 

 

Where ℓ′ refers to the elements of the transposed (i.e. inverse) matrix.  Using a similarity  

transform, the matrices LT and L can be used to diagonalize A, as follows. 

 

𝑳𝑻𝑨𝑳 =  𝚲 = (

𝜆1 0 0…
0 𝜆2 0…
0 0 𝜆3 …

…

) 

 

Thus, the eigenvalues are related to the mode frequencies as 

 

√𝜆𝑖 = 𝜔𝑖 = 2𝜋𝜈𝑖 

 

The collection of elements, ℓ𝑘𝑖, are called an eigenvector.  The eigenvectors are normalized such 

that 

 

∑ ℓ𝑘𝑖
2

3𝑁

𝑘=1

= 1 

 

for each of the i modes.  The kinetic energy is: 

 

𝑇 =
1

2

𝜕𝑸𝑻

𝜕𝑡
𝑳𝑻𝑳

𝜕𝑸

𝜕𝑡
=

1

2

𝜕𝑸𝑻

𝜕𝑡

𝜕𝑸

𝜕𝑡
=

1

2
∑(

𝜕𝑄𝑖

𝜕𝑡
)
23𝑁

𝑖=1

 

𝑉 =
1

2
𝑸𝑻𝑳𝑻𝑨𝑳𝑸 =

1

2
𝑸𝑻𝚲𝑸 =

1

2
∑𝜆𝑖𝑄𝑖

2

3𝑁

𝑖=1

 

 

The uncoupled equations of motion are now represented by 

 

𝑄𝑖 = 𝑄𝑖
0𝑠𝑖𝑛(√𝜆𝑖𝑡 + 𝛿) 



 

Each normal mode oscillates independently about the center-of-mass of the molecule. 

 

1.6 Anharmonic corrections 

 

 The harmonic approximation works remarkably well in a general sense.  It permits one to 

calculate infrared and Raman spectra from first principles as will be discussed in future chapters.  

However, a more realistic picture of the vibrational motions in molecules should include 

anharmonic corrections.  We can accomplish this in theory by including higher order terms in the 

expansion in Eqn. 1.3.1. 

𝑉(𝑄) = 𝑉(0) +
1

2
𝑘𝑄2 +

𝛽

6
𝑄3 +

𝛾

24
𝑄4 … 

            (1.7.1) 

The cubic anharmonicity given the term 𝛽𝑄3/6 is applicable asymmetric bonds.  The X-H bond 

(X= C, N, O) is an excellent example.   Quartic anharmonicity, 𝛾𝑄4/24, arises in cases where 

there are symmetric out-of-plane displacements.  The exocyclic amino group is a good example.  

Ammonia has a pyramidal shape.  We think of the amino group in aniline as planar, but in reality 

is oscillating very rapidly between two pyramidal distortions away from planarity.  The potential 

energy surface has the form shown in 1.7. 

 

 
Figure 1.7. Quartic potential energy surface representing symmetric out-of-plane distortions such 

as the amino group out-of-plane motion in aromatic compounds that have an exocyclic amino 

group. 

 

Cubic and quartic anharmonicities can be treated using perturbation theory.   

 



The Morse oscillator is a widely used model for potential energy surfaces.  It has a realistic look 

as shown in Figure 1.8.   

 

 
Figure 1.8. Morse potential energy surface compared to a harmonic potential surface.  The 

dissociation energy (De) and equilibrium bond length (Re) are shown in the figure. 

 

The Morse function is: 

𝑉(𝑥) = 𝐷𝑒(1 − 𝑒𝑥𝑝{−𝑎(𝑟 − 𝑟0)})
2 − 𝐷𝑒 

            (1.7.2) 

Where 𝐷𝑒  is the dissociation energy and the parameter, 

 

𝑎 = √
𝑘

2𝐷𝑒
 

            (1.7.3) 

Which also implies that the Morse model can be expressed in terms of the harmonic frequency, 

𝜔 

 

𝜔 = 𝑎√
2𝐷𝑒

𝜇
 

            (1.7.4) 

 

The Morse model correctly predicts that there will be decrease in the spacing of the frequency as 

the quantum number v increases. 

𝐸𝑣 = ℏ𝜔 (𝑣 +
1

2
) +

(ℏ𝜔)2

4𝐷𝑒
(𝑣 +

1

2
)
2

 



            (1.7.5) 

Such that the energy spacing decreases as, 

Δ𝐸 = ℏ𝜔 −
(ℏ𝜔)2

2𝐷𝑒
(𝑣 +

1

2
) 

(1.7.6) 

These expressions can be compared to the anharmonicity, 

 

𝐸𝑣 = ℏ𝜔 (𝑣 +
1

2
) − ℏ𝜔𝑥𝑒 (𝑣 +

1

2
)
2

 

(1.7.7) 

Which can also written the following form, 

Δ𝐸

ℎ𝑐
= 𝜈 (𝑣 +

1

2
) − 𝜈𝑥̃𝑒 (𝑣 +

1

2
)
2

 

(1.7.8) 

So that the anharmonicity constant is 

𝑥𝑒 =
ℏ𝜔

4𝐷𝑒
 

(1.7.9) 

 

 

𝜔 = 𝑎√
2𝐷𝑒

𝜇
 

 

 

Chapter 2. The rotational wave function: molecular rotation 

 

2.1 The moment of inertia 

 

 We have seen that rotation in two-dimensions is a problem that is easily solved.  The 

“particle-on-a-circle” equation is nothing less than the Schrödinger equation for rotational 

motion in two dimensions.  Of course, in that case the value of R (the radius) is fixed and the 

only variable is , the rotation angle about the z axis.  In the three dimensional case, which is the 

general treatment of molecular rotation, we will need two angles,  and .  Once again the radius 

is fixed since the molecular rotation can be specified in terms of a moment of inertia. For a 

diatomic molecule the moment of inertia is: 

 

𝐼 = 𝜇𝑅2 
            (2.1.1) 

Where R is the intermolecular bond length and  is the reduced mass 

 

𝜇 =
𝑚1𝑚2

𝑚1+ 𝑚2
 



            (2.1.2) 

For a single mass rotating around an axis the moment of inertia is: 

 

𝐼 = 𝑚𝑅2 
            (2.1.3) 

where R is the radius of rotation and m is the mass.  This definition can be extended to an 

arbitrary number of masses rotating about their center of mass. 

 

𝐼 = ∑𝑚𝑖𝑅𝑖
2

𝑁

𝑖=1

 

            (2.1.4) 

where N is the number of atoms. 

 

2.1 The oscillating dipole 

 

The permanent dipole moment of a molecule oscillates about an equilibrium value as the 

molecule vibrates.  Thus, the dipole moment depends on the nuclear coordinate Q. where  is the 

dipole operator. 

 

𝜇(𝑄) = 𝜇0 + (
𝜕𝜇

𝜕𝑄
)𝑄 + ⋯ 

            (2.2.1) 

We will ignore higher terms than linear.  We can separate rotational transitions from vibrational 

transitions by applying a rigid rotor approximation.  If the nuclei are rigid, then (𝜕𝜇/𝜕𝑄) = 0, and 

the second term in Eqn. 2.2.1 vanishes.  Rotational transitions arise from the rotation of the 

permanent dipole moment that can interact with an electromagnetic field in the microwave 

region of the spectrum.  In this approximation the dipole moment is just 0. 

 

𝜇(𝑄) = 𝜇0 
            (2.2.2) 

Thus, it is the interaction of electromagnetic radiation with this rotating dipole moment that gives 

rise to pure rotational (microwave) spectra and to side-bands in infrared spectra of molecules.  

Another way to consider the origin of the dipole moment is to consider the fact that a 

molecule is described by a total wave function that consists of an electronic, vibrational and 

rotational part. 

 

Ψ = 𝜓𝑒𝑙𝑒𝑐𝜒𝑣𝑖𝑏𝑌𝑟𝑜𝑡 
            (2.2.3) 

The dipole operator is  = er, where e is the charge on an electron and r is a displacement.  The 

dipole operator has units of charge displaced through distance, which corresponds to the classical 

picture.  For example, a diatomic such as HF with charge + and - on H and F, respectively, has 

a dipole moment of eR, where R is the bond length and  is the fraction of a charge displaced 

from atom to the other.  However, quantum mechanically we would calculate the dipole moment 

from the operator as: 

 



μ⃗ = 𝑒∫𝜓𝑒𝑙𝑒𝑐
∗ 𝑟 𝜓𝑒𝑙𝑒𝑐 𝑑𝜏 

            (2.2.4) 

The wave function gives the charge distribution over the basis.  Both definitions of dipole 

moment have units of Cm or Debye, D, where  

 

1 𝐷 = 2.33 𝑥 10−30 𝐶𝑚 
 

If we apply the dipole operator to the entire basis we have: 

 

μ⃗ = 𝑒∫∫𝜒𝑣𝑖𝑏
∗𝑌𝑟𝑜𝑡

∗  𝑟 ( 𝜓𝑒𝑙𝑒𝑐
∗𝑟𝜓𝑒𝑙𝑒𝑐𝑑𝜏) 𝜒𝑣𝑖𝑏𝑌𝑟𝑜𝑡 𝑑𝑄𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙 

            (2.2.5) 

or  

 

μ⃗ = μ0 ∫𝜒𝑣𝑖𝑏
∗ 𝜒𝑣𝑖𝑏𝑑𝑄∫𝑌𝑟𝑜𝑡

∗  𝑌𝑟𝑜𝑡 𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙 

 

where 

 

∫𝜒𝑣𝑖𝑏
∗ 𝜒𝑣𝑖𝑏𝑑𝑄 = 1 

 

since the vibrational wave functions are normalized.  Thus, the rotational transition moment is, 

 

μ⃗ = μ0 ∫∫𝑌𝐽′
𝑀′∗ 𝑌𝐽

𝑀 𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙 

            (2.2.6) 

where the integral is equal to one if J = J’ and M = M’.  There must be a different in quantum 

number in order for a transition to occur.  If we assume that there is an electric field polarized 

along x, y or z then we have the following possible terms that can interact with the rotational 

transition moment: 

 

𝐸𝑥
⃗⃗⃗⃗ = 𝐸0

⃗⃗⃗⃗ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 

𝐸𝑦
⃗⃗ ⃗⃗ = 𝐸0

⃗⃗⃗⃗ 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 

𝐸𝑧
⃗⃗⃗⃗ = 𝐸0

⃗⃗⃗⃗ 𝑐𝑜𝑠𝜃 
            (2.2.7) 

The interaction energy of the transition dipole with the electric field is: 

 

𝐻′ = −𝜇 ∙ 𝐸⃗  
            (2.2.8) 

This is the contribution to the Hamiltonian that gives rise to spectroscopic transitions.  Note that 

the dot product means that the interaction energy depends on the cosine of the angle between 𝜇  

and 𝐸⃗ .  In a sample where molecules have many orientations one will need to take this into 

account.  However, our discussion will usually ignore this point and assume that the electric field 



is aligned along the transition dipole for simplicity (cos(0) = 1).  In that case we may write the 

interaction Hamiltonian as, 

𝐻′ = −𝜇𝐸 
            (2.2.9) 

where  and E are scalars (i.e. just numbers). 

 

2.3 Spherical polar coordinates 

 

In order to proceed with any quantitative work related to solutions of the spherical harmonics 

and the transitions between them, we need to define the angles  and  in spherical polar 

coordinates. 

 
Figure 2.1. The spherical polar coordinate system.  The radius vector, r, has the projections  

shown on each of the axes, z = rcos, y = rsinsin, and x = rsincos. 

 

 

2.4 Rotation in a two-dimension coordinate system: the rigid rotator 

 

The quantum mechanical treatment of rotation in a two coordinate system is 

mathematically identical to the particle on a circle model treated in Chapter 2.  Here we assume 

that there is no vibration, and thereby separate the rotational problem treated in this Chapter from 

the vibrational problem, which will be discussed in Chapter 6. 

The simplest model for a rotation is a two-dimensional model that refers to the angular 

momentum of a mass traveling in a circle as shown in Figure 2.2 



 
Figure 2.2. Illustration of two-dimensional rotation.  The angular momentum Jz = r x p.   

Since r is perpendicular to p this can simply be written as Jz = rp. 

 

As shown in the figure, the angular momentum is Jz = rp.  Applying the DeBroglie relation for 

the linear momentum, p, we see that  

 

𝐽𝑧 = 𝑟𝑝 =
𝑟ℎ

𝜆
 

            (2.2.1) 

Since  must have an integral number of wavelengths around a circle, this is also a condition for 

quantization.  The condition is: 

 

2𝜋𝑟 = 𝑀𝜆 
            (6.2.2) 

where M is an integer.  Thus, 

 
1

𝜆
=

𝑀

2𝜋𝑟
 

 

which leads to 

 

𝐽𝑧 = 𝑀ℏ 
            (6.2.3) 

The energy of rotation is: 

 

𝐸 =
𝐽𝑧
2

2𝐼
=

𝑀2ℏ2

2𝐼
 

            (6.2.4) 

where I is the moment of inertia.  Using the definition of the moment of inertia, I = mr2, This is 

precisely the result we obtained using the particle on a circle, which shows the correspondence 

for two-dimensional rotation. 

 

2.5 Rotation in a three-dimensional coordinate system 

The full quantum mechanical treatment of rotation requires the use of spherical polar 

coordinates described in section 2.6.  The Hamiltonian is: 



 

−
ℏ2

2𝐼
(

1

𝑠𝑖𝑛2𝜃

𝜕2

𝜕𝜙2
𝑌 +

1

𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
(𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
𝑌)) = 𝐸𝑌 

            (6.1.1) 

The solutions to this equation are functions of both  and  that are known as spherical 

harmonics.  Spherical harmonics are standing waves on a sphere.  The number of nodes is given 

the quantum number J, which is also the total angular momentum quantum number.  The 

quantum number M, which was also derived in the previous section, is known as the azimuthal 

quantum number.  It is the projection of the angular moment along the z-axis..  The first three 

spherical harmonics are: 

𝑌0
0(𝜃, 𝜙) = (

1

4𝜋
)

1
2
 

 

𝑌1
0(𝜃, 𝜙) = (

3

4𝜋
)

1
2
𝑐𝑜𝑠𝜃 

 

𝑌1
±1(𝜃, 𝜙) = (

3

8𝜋
)

1
2
𝑠𝑖𝑛𝜃𝑒±𝑖𝜙 

 

𝑌2
0(𝜃, 𝜙) = (

5

16𝜋
)

1
2
(3𝑐𝑜𝑠2𝜃 − 1) 

 

𝑌2
±1(𝜃, 𝜙) = (

5

8𝜋
)

1
2
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑒±𝑖𝜙 

 

𝑌2
±2(𝜃, 𝜙) = (

5

32𝜋
)

1
2
𝑠𝑖𝑛2𝜃𝑒±𝑖2𝜙 

            (6.1.2) 

These have the appearance of the s, p and d-orbitals for quantum numbers, J = 0, 1 and 2, 

respectively.  Examples of the first three spherical harmonics are represented in Figure 2.6.  

 
Figure 2.6.  Representation of the first three spherical harmonics  



with zero, one and two planar nodes, respectively. 

 

These wave functions form an orthonormal set.  The normalization can be seen by taking 𝑌1
0as an 

example.  The normalization for 𝑌1
0(𝜃, 𝜙) 𝑖𝑠: 

 

 

∫ ∫ 𝑌1
0∗(𝜃, 𝜙)𝑌1

0(𝜃, 𝜙)𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙 =

𝜋

0

2𝜋

0

 (
3

4𝜋
)∫ ∫ 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙 =

𝜋

0

2𝜋

0

 

 

(
3

4𝜋
)∫ 𝑑𝜙 ∫𝑥2𝑑𝑥 =

1

−1

2𝜋

0

 (
3

4𝜋
) (2𝜋) (

1

3
− 

−1

3
) = 1 

 

Note that we used the substitution x = cos, which is the easiest way to solve the -integral.  

Orthogonality means that the integrals of any two different wave functions in the basis should be 

zero.  For example, 𝑌1
−1(𝜃, 𝜙) 𝑎𝑛𝑑 𝑌1

1(𝜃, 𝜙) 

 

∫ ∫𝑌1
−1∗(𝜃, 𝜙)𝑌1

1(𝜃, 𝜙)𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙 =  (
3

8𝜋
)∫ ∫ 𝑠𝑖𝑛𝜃𝑒𝑖𝜙𝑠𝑖𝑛𝜃𝑒𝑖𝜙𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙 =  

𝜋

0

2𝜋

0

𝜋

0

2𝜋

0

 

(
3

8𝜋
)∫ 𝑒𝑖2𝜙𝑑𝜙 ∫ 𝑠𝑖𝑛3𝜃𝑑𝜃 = 0

𝜋

0

2𝜋

0

 

The integral vanishes because of the  integral.  Recall that  

 

𝑒𝑖2𝜙 = cos(2𝜙) + 𝑖𝑠𝑖𝑛(2𝜙) 
 

You could prove mathematically that the cos(2) integral is zero or you can examine a plot of 

cos(2) and realize that this is an integral over 2 cycles of the wave.  The positive and negative 

parts cancel so that the integral is zero.  Similar comments apply to the sin(2) integrated from 0 

to 2. 

The solutions represented in Figure 2.3 are only a subset of the possible solutions.  

Quantum number J has gJ = 2J + 1 solutions, we therefore say that the degeneracy of the 

quantum levels is 2J + 1.  The different solutions have different values of quantum number M 

such that |M| ≤ J. This is shown for J = 2, which has 5 different projections on the z-axis. 



 
Figure 2.6.  Spatial quantization of the azimuthal angular momentum. 

 

The energy of the wave functions depends only on J.  We say that the 5 sublevels in J = 2 are 

degenerate.  These wave functions correspond to the energies, 

 

𝐸𝐽 = 
ℏ2

2𝐼
𝐽(𝐽 + 1) 

            (6.1.3) 

2.6 Pure rotational spectra 

Transitions can occur as a result of interaction with electromagnetic radiation.  In pure 

rotational spectra, it is the rotation of the permanent dipole, 0, that leads to interaction with 

radiation of the appropriate frequency.  There are two requirements for the absorption of 

radiation.  These are the conservation of energy and angular momentum.  Here we will not prove 

the conservation of angular momentum.  However, since the 𝑌𝐽
𝑀 form an orthonormal set of 

wave functions we know that there must be an additional term that leads to a transition.  Such a 

term is given by the oscillating electric field in Eqn. 2.2.7.   We can consider the transition from 

J = 1  J = 2.  The product of the transition moment and electric field is: 

 

𝑀𝐸⃗ 0 = 𝐸⃗ 0𝜇0⃗⃗⃗⃗ ∫ ∫ YJ+1
M ∗

𝜋

0

𝑐𝑜𝑠𝜃YJ
Msin𝜃𝑑𝜃

2𝜋

0

𝑑𝜙 

            (2.2.1) 

For z-polarized light we must use 𝑌1
0.  Then we must choose the spherical harmonic for J+1 that 

also has the appropriate symmetry.  We can guess that it is the function that corresponds to dz2 

(i.e. 𝑌2
0).  This spherical harmonic is, 

𝑌2
0(𝜃, 𝜙) = (

5

16𝜋
)

1
2
(3𝑐𝑜𝑠2𝜃 − 1) 

            (6.2.2) 

Thus we have 

 



𝑀𝐸⃗ 0 = (
3

4𝜋
)

1
2
(

5

16𝜋
)

1
2
𝐸⃗ 0𝜇0⃗⃗⃗⃗ ∫ ∫(3𝑐𝑜𝑠2𝜃 − 1)

𝜋

0

𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜃sin𝜃𝑑𝜃

2𝜋

0

𝑑𝜙 

 

𝑀𝐸⃗ 0 = (
15

64
)

1
2 1

𝜋
𝐸⃗ 0𝜇0⃗⃗⃗⃗ ∫ 𝑑𝜙 ∫(3𝑥2 − 1)

1

−1

𝑥2𝑑𝑥

2𝜋

0

 

 

We solve the cos0 (i.e. x) integral separately. 

∫(2 − 3𝑥2)

1

−1

𝑥2𝑑𝑥 =  ∫𝑥2𝑑𝑥

1

−1

− 3 ∫𝑥4

1

−1

𝑑𝑥 = (
1

3
− 

−1

3
) − 3 (

1

5
−

−1

5
) =

2

3
− 

6

5
= 

10

15
− 

18

15
= − 

8

15
 

Therefore, 

𝑀𝐸⃗ 0 = − (
15

64
)

1
2 1

𝜋
𝐸⃗ 0(2𝜋) (

8

15
) 𝜇0⃗⃗⃗⃗ =  − 

2𝐸⃗ 0𝜇0⃗⃗⃗⃗ 

√15
 

            (6.2.3) 

It is all right that this value is negative.  It is the square of this value that is proportional to the 

transition probability.  Given that this is the method applied to z-polarized light, we leave it as an 

exercise to determine which of the spherical harmonics give allowed transitions for x polarized 

light.  Hint: it may be necessary to form linear combinations of the spherical harmonics within a 

given angular momentum level.  You may consider the polarization of the electric field in terms 

of imaginary components, e.g. cos() = ½(ei + ei). 

 The general case for transitions gives rise to the selection rule J = ± 1.  J = 1 for 

absorption and J = -1 for emission.  This selection rule is a consequence of the requirement for 

conservation of angular momentum.  In addition to conservation of angular momentum, we must 

have conservation of energy.  The energy for transition between any two states J asnd J + 1 is, 

 

Δ𝐸 = 𝐸𝐽+1 − 𝐸𝐽 =
ℏ2

2𝐼
[(𝐽 + 1)(𝐽 + 2) − 𝐽(𝐽 + 1)] =  

ℏ2

2𝐼
[2(𝐽 + 1)] 

            (6.2.4) 

We call 
ℏ2

2𝐼
 the rotational constant, and give it the name B.  The rotational constant can be 

expressed in cm-1, by dividing the above value in Joules by hc.   

 

𝐵̃ =  
ℏ2

2𝐼

1

ℎ𝑐
=  

ℏ

4𝜋𝑐𝜇𝑅2
= 

ℎ

8𝜋2𝑐𝜇𝑅2
 

            (6.2.5) 

Note that the spacing of the energy levels increases as 2(J + 1), where J = 0, 1, 2, 3… as shown 

in Figure 2.5.  The pattern is that the transitions are observed at 2J, 4J, 6J, etc. and thus, every 2J. 



 
Figure 2.5.  Difference energy level spacing for rotational transitions.   

 

The result is that the pure rotational spectra are a progression of lines with spacing equal to 2B, 

the rotational constant,  Pure rotational spectra are microwave spectra.  Rotational constants 

range from < 1cm-1 to as large as 60 cm-1 for H2.  By definition H2 has the largest rotational 

constant since it has the smallest moment of inertia.  The appearance of a typical pure rotational 

spectrum is a set of lines spaced at 2B that peaks at some point and then decreases.  A typical 

spectrum is shown in Figure 2.6.  Note that the energy value is given in gigahertz (GHz), which 

corresponds to a unit of 109 s-1.  This is a unit of frequency, 𝜈 and is obtained from wavenumber, 

𝜈, by the equation, 𝜈 = 𝜈𝑐. 

 

 
Figure 2.6. Pure rotational (microwave) spectrum for CO.   

Note that the frequencies are given in GHz (gigahertz). 

  



2.7 The rotational partition function 

 The solutions to the rotational Hamiltonian provide energy levels that can be used to 

determine the rotational partition function.  The sum over all of the energy levels weighted by 

their Boltzmann population gives the rotational partition function, 

 

𝑞𝑟𝑜𝑡 = ∑(2𝐽 + 1)𝑒𝑥𝑝 {−
ℏ2

2𝐼𝑘𝐵𝑇
𝐽(𝐽 + 1)}

∞

𝐽=0

 

            (2.7.1) 

When the rotational energy level spacing is considerably less than thermal energy, i.e. 

 

ℏ2

2𝐼
≪ 𝑘𝐵𝑇 

            (2.7.2) 

We can approximate the sum by an integral, 

𝑞𝑟𝑜𝑡 = ∫(2𝐽 + 1)𝑒𝑥𝑝 {−
ℏ2

2𝐼𝑘𝐵𝑇
𝐽(𝐽 + 1)} 𝑑𝐽

∞

0

 

            (2.7.3) 

It is quite fortuitous that this integral can be simplified by the substitution, 

  

𝑢 = −
ℏ2

2𝐼𝑘𝐵𝑇
𝐽(𝐽 + 1) 

Then  

𝑑𝑢 = −
ℏ2

2𝐼𝑘𝐵𝑇
(2𝐽 + 1)𝑑𝐽 

So that we can write  

𝑞𝑟𝑜𝑡 = −
2𝐼𝑘𝐵𝑇

ℏ2
∫ 𝑒𝑢𝑑𝑢 =

−∞

0

2𝐼𝑘𝐵𝑇

ℏ2
 

            (2.7.4) 

The rotational partition function can include a symmetry number if the axis of rotation is also an 

axis of symmetry of the molecule.  The symmetry is , where  is equal to the order of the 

symmetry axis, 

𝑞𝑟𝑜𝑡 =
2𝐼𝑘𝐵𝑇

𝜎ℏ2
 

            (2.7.5) 

One consequence of the population of rotational energy levels is that pure rotational spectra have 

a temperature dependent profile. One can summarize this dependence by calculating the 

maximum value of the quantum number J as a function of temperature. To determine Jmax we 

take the derivative of the individual terms of the partition function with respect to J. Those terms 

are 

 

𝑝𝐽 = 𝐶(2𝐽 + 1)𝑒𝑥𝑝 {−
ℏ2

2𝐼𝑘𝐵𝑇
𝐽(𝐽 + 1)} 



where C = 1/qrot. Therefore, 

𝜕𝑝𝐽

𝜕𝐽
= 0 = (2 − (2𝐽 + 1)2

ℏ2

2𝐼𝑘𝐵𝑇
)𝑒𝑥𝑝 {−

ℏ2

2𝐼𝑘𝐵𝑇
𝐽(𝐽 + 1)} 

Solving for J we first write 

2 = (2𝐽 + 1)2
ℏ2

2𝐼𝑘𝐵𝑇
 

 

(2𝐽 + 1) =
√4𝐼𝑘𝐵𝑇

ℏ
 

To finally yield 

𝐽𝑚𝑎𝑥 =
√𝐼𝑘𝐵𝑇

ℏ
−

1

2
 

 

Chapter 4 Summary 

 

Rotational energy levels and transitions 

Pure rotational spectra or microwave are only observed for molecules that have a 

permanent dipole moment.  The rotational selection rule is ∆𝐽 = ±1.  Pure rotational spectra 

have energies, 

Δ𝐸 =  
ℏ2

𝐼
(𝐽 + 1) 

The spacing of lines in the pure rotational spectrum is 2B, where  

B =  
ℏ2

2𝐼
 

 

Extracting bond lengths from rotational spectra 

The moment of interia is  

 

𝐼 = 𝜇𝑅2 
 

for a diatomic molecule so that the bond length, R, of the molecule can be obtained from the 

rotational line spacing.  In units of cm-1 we can write, 

 

𝐵̃ =  
ℎ

8𝜋2𝑐𝜇𝑅2
 

 

or 

𝑅 = √
ℎ

8𝜋2𝑐𝜇𝐵̃
 

 

The rotational partition function 

The rotational partition function can be treated in a classical limit since the rotational line 

spacing 𝐵̃ << kBT.  The partition function is, 



𝑞𝑟𝑜𝑡 =
2𝐼𝑘𝐵𝑇

𝜎ℏ2
 

where  is equal to the order of the symmetry axis of the molecule. 

 

Exercises 

2.1. The spectrum in Figure 2.6 is called a pure rotational spectrum.  The transitions are a direct 

measure of the solutions to the rotational Schrödinger equation.  The x-axis is given in gigahertz 

(GHz), where 1 GHz = 109 s-1.   

A. How many GHz are in one cm-1? 

B. Estimate the rotational constant for CO in wavelength from Figure 2.6.  In what region of the 

electromagnetic spectrum is it found? 

C. Estimate the value of J that is maximum at T = 40 K.  How will this change at 100 K? 

 

2.2. The spectrum in Figure 2.7 represents a combination of rotation and vibration.  The central 

line, which is missing because of the selection rule for rotation, is the vibrational transition 

frequency, given in units of electron volts (eV).  When multiplied by the charge of one electron 

1eV is equivalent to 1 Joule, 

(1𝑒𝑉)(1.62 𝑥 10−19 𝐶) = 1.62 𝑥 10−19 𝐽𝑜𝑢𝑙𝑒 

 

A. How many cm-1 are there per eV? 

 

B. Sketch a vibrational potential energy surface with two vibrational energy levels.  Add 

rotational sublevels above each vibrational energy level.  Draw arrows to show the P and R 

branches on the diagram. 

 

2.6. The rotational constant is directly related to the bond length of a diatomic molecule through 

the moment of inertia for rotation.   We can use the rotational constant measured from 

spectroscopy to calculate the bond length as follows.  We begin with Eqn. 6.2.5, 

 

𝐵̃ =  
ℎ

8𝜋2𝑐𝜇𝑅2
 

and then solve for R, 

𝑅 =  √
ℎ

8𝜋2𝑐𝜇𝐵̃
 

The speed of light should be given in cm/s in order to convert 𝐵̃ from cm-1 to MKS units.  From 

the data in Figure 2.6 we can estimate the line spacing is ~120 GHz.  Use that information to 

calculate a bond length for CO. 

 


