
The Fourier transform



Fourier series



A Fourier series is an expansion of a periodic function in terms of an infinite sum of 

sines and cosines. Fourier series make use of the orthogonality of  the sine and 

cosine functions. 



Mathematically we can express the Fourier series as:
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Nuclear magnetic resonance
FT-NMR



Classic example: Free induction decay in NMR



Lorentzian broadening

A Lorentzian is the Fourier-transform of an exponential function.  To see 
this we begin with the definition of a Fourier transform.
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We then substitute in e-Gt where G = 1/T2 is the relaxation time of the 
excited state.  The precise model for the excited state dynamics depends 
on the system.  If we consider magnetic resonance, we will include 
magnetic inhomogeneity in the linewidth and so T2 is used. However, for 
optical transitions the homogeneous line width may include only the 
excited state life time, or natural life time, T1. 



The Fourier transform
This expression includes the appropriate normalization constant 
for a Lorentzian.  In the general case of a Lorentzian centered 
about 𝜔𝑜, we have 
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Absorption and dispersion
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The resulting function is complex.  One can think of a complex 
function as resulting from in-phase and out-of-phase terms.  
An in-phase term leads to dispersion of the light and and out-
of-phase term leads to absorption.  



Note that this is a normalized function so that the integral of 

L(w) from - to  is equal to one.  Notice that the analogy with 

NMR is evident in the fact that our excited state decay function 

is a sinusoid times an exponential.   The real part has the 

appearance

This is what is observed in NMR.  Note that we have added a 

factor of p for normalization. We can say that the Fourier 

transform of an exponential is a Lorentzian.

The NMR line shape is Lorentzian

L(w) =
G

p G2 + w – w
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Definition of the magnetization vector



Equilibrium Effect of a p/2 pulse is to 

rotate M into the x,y plane
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Detection of the NMR signal



One example of a common Fourier transform is the free 

induction decay in NMR. In this instance there are both 

real and imaginary parts. This is because when the 

magnetization is rotated into the x-y plane it is detected by

Coils along both x and y (out-of-phase and in-phase).

The Free Induction Decay



Relaxation times T1 and T2



This expression can be written in terms of the units of cm-1 and ps.

This derivation assumes that the life time is shorter than the 

dephasing time, which occurs for some systems. If the dephasing 

time, T2 is shorter then T2 should replace T1 in the above equations.

Lifetime broadening

The time energy uncertainty principle is



Conjugate variables



The Nyquist frequency



The Nyquist frequency



Visualizing folding: the data frequency 
exceeds the sampling frequency

Sampling frequency  - - - - - - -

Data frequency  _________



Referring again to Figure 1, undersampling of the sinusoid at 0.6 fs is 

what allows there to be a lower-frequency alias, which is a different 

function that produces the same set of samples. That condition is 

usually described as aliasing. The mathematical algorithms that are 

typically used to recreate a continuous function from its samples will 

misinterpret the contributions of undersampled frequency 

components, which causes distortion. Samples of a pure 

0.6 fs sinusoid would produce a 0.4 fs sinusoid instead. If the true 

frequency was 0.4 fs, there would still be aliases at 0.6, 1.4, 1.6, 
etc. but the reconstructed frequency would be correct.

Aliasing



The Nyquist frequency is named after electronic engineer Harry Nyquist.
We can think of it as the folding frequency meaning that if the sampling 
frequency is less than ½ of the Nyquist frequency we will see artifacts folded
into the signal. In the example shown in the figure  fs is the sampling rate 
and 0.5 fs is the corresponding Nyquist frequency. The black dot plotted 
at 0.6 fs represents the amplitude and frequency of a sinusoidal function 
whose frequency is 60% of the sample-rate (fs). The other three dots 
indicate the frequencies and amplitudes of three other sinusoids that 
would produce the same set of samples as the actual sinusoid that was 
sampled. The symmetry about 0.5 fs is referred to as folding.

The Nyquist frequency

In order to recover all Fourier components of a periodic waveform, 

it is necessary to use a sampling rate at least twice the highest

waveform frequency. The Nyquist frequency, or Nyquist limit, 

is the highest frequency that can be coded at a given sampling rate in 

order to be able to fully reconstruct the signal, i.e.,

fNyquist = ½ n



Sampling is the process of converting a signal into a numeric sequence 

(a function of discrete time or space). This the process of digitization

The Nyquist-Shannon theorem states:

If a function x(t) contains no frequencies higher than B counts per second,

it is completely determined by giving its ordinates at a series of points 

spaced 1/(2B) seconds apart.

A sufficient sample-rate is at 2B samples/second or greater. 

Conversely, for a given sample rate fs the bandlimit for perfect 

reconstruction isB ≤ fs/2 . When the bandlimit is too high, the 

reconstruction exhibits imperfections known as aliasing.

The Nyquist-Shannon theorem



Fast Fourier Transform



While NMR line shapes can be obtained in theory using

an analytical function, try doing this if there are 50 nucleic

oscillating in the sample.

There are many examples in science where we need FT 

Methods. We will use Fourier transform infrared in the class.

In that method the signal is composed of the detector 

response at various different positions of the moving mirror 

in an interferometer. We must take the FT of the 

“interferogram” in order to obtain the optical response.

In powder X-ray diffraction the electron density is obtained 

as the FT of the measured intensities at various h,k,l (Miller) 

indices, corresponding to Bragg planes in the material.

The need for a fast Fourier Transform



Evaluating this definition directly requires O(N2) operations: there 
are N outputs Xk, and each output requires a sum of N terms. An 

FFT is any method to compute the same results in O(N log N) 

operations. 

An FFT is the fastest known method to compute the Discrete 

Fourier Transfer (DFT). Let x0, ...., xN-1 be complex numbers. 

The DFT is defined by the formula

The discrete Fourier transform



By far the most commonly used FFT is the Cooley-
Tukey algorithm. This is a divide and conquer algorithm that 

recursively breaks down a DFT of any composite 

size N = N1N2 into many smaller DFTs of sizes N1 and N2, along 

with O(N) multiplications by complex roots of unity traditionally 
called twiddle factors (after Gentleman and Sande, 1966).

The Cooley-Tukey algorithm

This method (and the general idea of an FFT) was published 
by J.W. Cooley and J.W. Tukey in 1965, but it was later 

discovered that those two authors had independently re-
invented an algorithm known to Gauss around 1805.



The best known use of the Cooley–Tukey algorithm is to divide 

the transform into two pieces of size N/2 at each step, and is 

therefore limited to power-of-two sizes, but any factorization can 

be used in general (as was known to both Gauss and 
Cooley/Tukey). These are called the radix-2 and mixed-

radix cases, respectively (and other variants such as the split-

radix FFT have their own names as well). Although the basic 

idea is recursive, most traditional implementations rearrange the 
algorithm to avoid explicit recursion. Also, because the Cooley–
Tukey algorithm breaks the DFT into smaller DFTs, it can be 

combined arbitrarily with any other algorithm for the DFT.

Divide and conquer



The Radix-2 DIT algorithm rearranges the DFT of the function 
xn into two parts: a sum over the even-numbered indices n = 

2m and a sum over the odd-numbered indices n = 2m + 1.

Even and odd terms

A radix-2 decimation-in-time (DIT) FFT is the simplest and 

most common form of the Cooley–Tukey algorithm, although 

highly optimized Cooley–Tukey implementations typically use 

other forms of the algorithm as described below. Radix-2 DIT 
divides a DFT of size N into two interleaved DFTs (hence the 

name "radix-2") of size N/2 with each recursive stage.



Radix-2 DIT first computes the DFTs of the even-indexed 
inputs x2m = x0, x2, ...xN-2 and of the odd-indexed inputs x2m+1

= x1, x3,....xN-1, and then combines those two results to 

produce the DFT of the whole sequence. This idea can then 
be performed recursively to reduce the overall runtime to 

O(N log N). This simplified form assumes that N is a power of 

two. Since the number of sample points N can usually be 

chosen freely by the application, this is often not an 

important restriction.

Recursive approach



One can factor a common multiplier out of the 

second sum, as shown in the equation below. It is then 

clear that the two sums are the DFT of the even-indexed 
part x2m and the DFT of odd-indexed part x2m+1 of the 

function. Denote the DFT of the Even-indexed inputs 

x2m by Ek and the DFT of the Odd-indexed inputs x2m+1 by Ok

and we obtain:

The twiddle factor
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FFT decomposition


