
Analysis of the FTIR spectrum of HCl 

INTRODUCTION  

 
 

 
 
 Fig. E7.1  Energy diagram for the process of IR absorption by HCl 
  
Using a Fourier Transform Infra-Red (FTIR) Spectrometer it is possible to resolve the rotational 
fine structure of the rotation-vibration transitions of a small linear molecule like HCl. Structural 
information about the molecule can be obtained from an analysis of this spectrum.  Taking into 
account only harmonic and rigid terms McQuarrie and Simon derive two different expressions 
[13.12] for the R branch and [13.13] the P branch. However, they can be combined. Using the 
variable m, defined below McQ[13.12] and McQ[13.13] both yield:  
 

𝜈𝑜𝑏𝑠 = 𝜈𝑒 + 2�̃�𝑚                                                                 (1)  
 

m  Ji + 1 for the R branch, where (J= +1), m  - Ji for the P branch, where (J= -1).   

If we include anharmonicity (xee) McQ[13.21] and rotation-vibration interaction () 
McQ[13.17] terms the same treatment yields: 
 

𝜈𝑜𝑏𝑠 = 𝜈𝑜 + 2(𝐵𝑒 − 𝛼)𝑚 − 𝛼𝑚2                                            (2) 
 
where:  

νo νe 

With anharmonicity: ν0= νe- 2xeνe 
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~
  = the observed vibration frequency in wavenumbers cm-1 (as indicated by the tilde ~).  

~
 o = the frequency for a vibrational transition for J = 0, i.e. the (absent) Q branch. 
Be = the rotational constant for the equilibrium bond length R 

 = vibration-rotation interaction. 
 
The unit of cm-1 is the most common unit in spectroscopy. If you want to convert it to s-1 you 
need to use the speed of light, but the units must be cm/s (c = 2.99 x 1010 cm/s). To convert cm-

1 to Joules use the conversion factor hc, where h is Planck’s constant. 

EXPERIMENT 

 
In this experiment you will run the infrared spectrum of HCl in the vapor phase using an 
Excalibur Fourier Transform Infra-Red Spectrometer. The intensity of the absorption for each 
transition is a product of the population of the initial state and the absorption coefficient for 
the transition.  You will use the integrated intensities to test the applicability of the Boltzmann 
distribution prediction of the populations of the initial states. 
 
The HCl is introduced into a 10 cm quartz cell as two drops of hydrochloric acid, and the 
spectrum is taken of the vapor in equilibrium with this solution.  Quartz transmits between 

2500 and 3500 cm-1.  That allows the HCl fundamental to be observed, i.e. we will look at the 
frequency of light that causes the process:   
 

                                 HCl(v = 0 ; Ji )   HCl(v = 1 ;Jf)  where Jf –Ji = J =  1  

 

Since we will only look at (v= 01), the fundamental frequency, we can only find the energy 

difference between the ground state and the first excited (vibr.) state, 
~
 o, not 

~
 e, the 

frequency corresponding to the curvature at the bottom of the parabolic potential curve (see 

McQ[13.22]). For the lines we study, the accompanying rotational change is either J = +1 (for 

R) or J= -1 (for P).  
  
 

A. CALCULATION OF MOLECULAR PARAMETERS 

 
First let us analyze the frequencies (peak positions) in the first column of the data. 
 
The major part of this assignment is an analysis of the infrared vibration-rotation spectrum of 
HCl in terms of the theoretical model discussed above  

First try a regression fit of the equation:  𝜈=  a0 +  a1 m  + 
Use a residual plot to show that it is necessary to add a term  +  a2m2 to the model.  
Compare this polynomial (actually quadratic) model with Eq. 2 to identity of the coefficients as: 



 

                          a0 = 𝜈o  a1 = 2 �̃�e - 2    a2 = - 
 
This model allows for vibration-rotation interaction, but ignores the centrifugal distortion term 

-DeJ2(J+1)2  (see McQ[13.23])  Show a plot of observed frequencies and the calculated  vs. m 
and a residual plot. 

If the residuals are not random, it may be necessary to add another term to the 
polynomial and investigate whether the centrifugal distortion -DeJ2(J+1)2 could be responsible 
for such a term. Show a derivation along the lines of McQ[13.12/13] and use the definitions of 

m(Introduction). 

From these data you will calculate and report 
~
 o , B

~
 e and (and perhaps De). From B

~
 e you will 

calculate the moment of inertia I and the bond length R.  Include calculated uncertainties with 
all calculated quantities using the method of propagation of uncertainties (or errors). Ignore 
possible covariance between the coefficients ai in the polynomial model. 
 
Hint: To do the error propagation, first express Be, I and R in terms of the parameters a0, a1, and 
a2. Then calculate weights for the variances (se

2(a0, 1, 2, 3)) by taking derivatives. Make sure you 
report and use the correct units.  
 

B.  FITTING BOLTZMANN DISTRIBUTION 

 
Secondly, let us analyze the intensities of the peaks.  Your data contains two values, both height 
and area, but one is clearly a better measure than the other, just look at a graph of area vs. 
frequency and height vs. frequency. One is smoother than the other, take the best one. From 
the above analysis the value for m and thus the initial value of J (Ji) is known. We will indicate 
the intensity value for a line with a certain initial J value as IJ below. 
 
We will go beyond simply finding the properties of the molecules to examine the prediction of 
the Boltzmann distribution and the relative intensities of the rotational lines.  The population, 
NJ, of the level with rotational quantum number J (with degeneracy gJ) is given by: 

 

𝑁𝐽 = (2𝐽 + 1)𝑒𝑥𝑝 {
ℎ𝑐�̃�𝐽(𝐽 + 1)

𝑘𝑇
} 

 
Using this formula we see that N0 = 1 (at J=0). Therefore, the relative population is:  

 
𝑁𝐽

𝑁0
= (2𝐽 + 1)𝑒𝑥𝑝 {

ℎ𝑐�̃�𝐽(𝐽 + 1)

𝑘𝑇
}                                        (3) 

 
The factor gJ is the degeneracy of the level J. Because rotation wave functions are identical to 
the rotational part of hydrogen wave functions gJ = 2J+1. (s, p, d, f, g,..) 



The intensity of absorption of a rotational line departing from rotational level J, IJ, is given by: 

𝐼𝐽 = 𝜖𝐽𝑁𝐽                                                                       (4) 

   

For each line, the absorption coefficient J is given by Herzberg as being approximately 

proportional to the line’s frequency J.  Therefore the ratio of the intensity of a rotational line 
originating from rotational level J to that of a rotational level originating from the J = 0 level is: 
 

𝐼𝐽

𝐼0
=

𝜖𝐽𝑁𝐽

𝜖0𝑁0
≈

𝜈𝐽𝑁𝐽

𝜈0𝑁0
 

                                             (5) 
And  

𝐼𝐽

𝐼0
≈

𝜈𝐽

𝜈0

(2𝐽 + 1)𝑒𝑥𝑝 {−
ℎ𝑐�̃�𝐽(𝐽 + 1)

𝑘𝑇
} 

    

In this expression 0 is the frequency of the first transition (i.e. first rotational line in the R 
branch). The mean of the 0 here is that the transition originates from the zero state. It is a 0 -> 

1 transition. In general, J corresponds to a J  ->  J + 1 transition. From Equations 2 and 4 one 
can derive a formula to plot the relative intensities of different lines such that we should get a 
straight line.  We can linearize the formula by taking the logarithm of both sides: 

𝑙𝑛 (
𝐼𝐽

𝐼0

𝜈0

𝜈𝐽
) − 𝑙𝑛(2𝐽 + 1) = −

ℎ𝑐�̃�

𝑘𝑇
𝐽(𝐽 + 1)                                   (6) 

 
This means that if you plot:  
 

𝑙𝑛(2𝐽 + 1) − 𝑙𝑛 (
𝐼𝐽

𝐼0

𝜈0

𝜈𝐽
)    𝑣𝑠.        𝐽(𝐽 + 1)    

 
You should get a straight line. From a regression you can extract the temperature. Be sure to 
include the error in the slope obtained from the fit and then to use propagation of error to 
obtain an error in your estimated temperature. The correct value should be less than 298 K 
since the building is usually not that warm during the winter months. 
 

DISCUSSION 

 
Compare calculated molecular parameters with those listed in Simon & McQuarrie  
p. 499 or another standard source.  
 
Compare the calculated temperature with your best guess of the temperature in the  
sample chamber. 
 
 



Why is there no absorption at 𝜈0? 
 
What is the difference between 𝜈0 and 𝜈𝑒? [Cf. McQ & Simon Eq 13.21  

(Remember v: 01) and see figure E7.1 above] 
 
Infrared Spectroscopy folder is available in the laboratory and contains articles and  
tables of data dealing with the spectra of diatomic molecules. 
 
Some Excel hints: 
 
To do a quadratic regression create a column of the linear values of x (the A column), a column 
of the quadratic values of x2 (the B column) and your y values (the C column). The select a range 
of 5 rows x 3 columns and type  
 
=linest(Cfirst:Clast,Afirst:Blast,TRUE,TRUE)  
 
and use Ctrl+Shift+Enter to activate the formula. For the linear model you only need 2 columns, 
but for the quadratic model you will need three columns (e.g. for a model with ca term more 
use a column more.) The first row of the linest range contains the coefficients of the model in 
reverse order, i.e. for Y=a + bX+ cX2 you get c,b,a. In two additional columns, use these 
parameters to construct a fit value for each data point and, by subtraction, a residual. Graph 
the data plus the fit versus m.  
 
Some useful constants: 
mH= 1.007825 au, m35= 34.968853 au m37= 36.965903 au, 1 au =1.660540 10-27 kg. 
h = 6.626076 10-34 Js, kB= 1.38066 10-23 J/K. c = 2.99792458 1010 cm/s. 

Careful: �̃� is in cm-1 (not m-1)   
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