Using LINEST for multiple regression

Application to determination of concentration of unknowns

Setting up the multiple regression for the UV-vis experiment

If we treat the LINEST as a multiple regression then we can use the data for absorbance

$$
A=\varepsilon \ell c
$$

Where $\ell=1 \mathrm{~cm}$ and thus we can simply write it as 1 . Thus, a plot of A vs. ε should be linear with a slope equal to c, the concentration. If we have multiple concentrations then we can set up the regression as

ε_{11}	ε_{21}	A_{1}
ε_{12}	ε_{22}	A_{2}
ε_{13}	ε_{23}	A_{3}
ε_{14}	ε_{24}	A_{4}

And the slopes of the multiple regression will be c_{1} and c_{2}. The intercept should be zero. The standard errors can be used as the error estimate in this solution of the problem.

When defining the LINEST for this problem you need a 3×5 array

	File	Home		Page Layout F	Formulas Dat	Conc_UV - Excel (Product Activation Failed) Review View Q Tell me what you want to do...						
	JM	\checkmark	$\times \checkmark$	f_{x} =LINE	EST(D3:D6,B3:C6							
A	1 A	A	B	c	D	E	F	G	H	1	J	
1	$\lambda(\mathrm{nm})$		\&Nd	$\varepsilon \mathrm{Cu}$	A							
2												
3		523	0.01	0.0285	0.0551		33:C6,1,1)					
4		577	5.703	0.0602	0.1359							
5		660	5.9	3.14	0.0861							
6		743	5.703	9.68	0.4024							
7												
8												
9												
10												
11												
12												
13												
14												
15												
16												
17												
18												
19												

Implement the LINEST using <crtl><shift><enter>

Definitions of the solution array

