Using LINEST for multiple regression

Application to determination of concentration of unknowns

Setting up the multiple regression for the UV-vis experiment

If we treat the LINEST as a multiple regression then we can use the data for absorbance

$$A = \varepsilon \ell c$$

Where $\ell = 1 \ cm$ and thus we can simply write it as 1. Thus, a plot of A vs. ε should be linear with a slope equal to c, the concentration. If we have multiple concentrations then we can set up the regression as

$$\begin{array}{cccc} \varepsilon_{11} & \varepsilon_{21} & A_1 \\ \varepsilon_{12} & \varepsilon_{22} & A_2 \\ \varepsilon_{13} & \varepsilon_{23} & A_3 \\ \varepsilon_{14} & \varepsilon_{24} & A_4 \end{array}$$

And the slopes of the multiple regression will be c_1 and c_2 . The intercept should be zero. The standard errors can be used as the error estimate in this solution of the problem.

When defining the LINEST for this problem you need a 3 x 5 array

E	∃ 5 ∙ ∂	» - ∓		Conc_UV - Excel (Product Activation Failed)							
F	ile Home	Insert P	age Layout I	Formulas Da	ita Review	View	${f Q}$ Tell me what yo	u want to do			
SUM ▼ : × ✓ f _x =LINEST(D3:D6,B3:C6,1,1)											
	А	В	С	D	E	F	G	Н		J	К
1	λ (nm)	εNd	εCu	A							
2											
3	523	0.01	0.0285	0.0551		33:C6,1,1)					
4	577	5.703	0.0602	0.1359							
5	660	5.9	3.14	0.0861							
6	743	5.703	9.68	0.4024							
/											
8											
10											
11											
12											
13											
14											
15											
16											
17											
18											
19											

Implement the LINEST using <crtl><shift><enter>

E] 5 - ∂	» -				Conc_UV - Excel (Product Activation Failed)					
F	ile Home	Insert P	age Layout	Formulas Da	ita Review	View 🖓	Tell me what you	ı want to do			
F3	•	: × ✓	<i>f</i> ₃ {=LIN	EST(D3:D6,B3:C	6,1,1)}						
	А	В	С	D	E	F	G	Н	I.	J	К
1	λ (nm)	εNd	εCu	Α							
2						[Cu]	[Nd]				
3	523	0.01	0.0285	0.0551		0.0312065	0.00277835	0.05713867			
4	577	5.703	0.0602	0.1359		0.0155653	0.02454436	0.10867783			
5	660	5.9	3.14	0.0861		0.84381957	0.10852718	#N/A			
6	743	5.703	9.68	0.4024		2.7014254	1	#N/A			
7						0.06363558	0.01177815	#N/A			
8									烜		
9											
10											
11											
12											
13											
14											
15											
16											
17											
18											
19											
20											

Definitions of the solution array

E	ם י רי [» - ∓					Conc_UV - I	Excel (Product Activa	ation Failed)			
F	ile Home	Insert P	age Layout	Formulas Da	ita Review	View	♀ Tell me what	you want to do				
F3 • : × ✓ <i>f</i> _x m1												
	Α	В	С	D	E	F	G	Н	I.	J	К	
1	λ (nm)	εNd	εCu	Α								
2												
3	523	0.01	0.0285	0.0551		m1	m2	b				
4	577	5.703	0.0602	0.1359		se1	se2	be				
5	660	5.9	3.14	0.0861		R	sey					
6	/43	5.703	9.68	0.4024		F	dt ee reeld					
0						ss reg	ss resid					
9		m1 =	slope of	regressio	n 1							
10		m2 –	m2 = slope of regression 2									
11												
12		b = in	b = intercept									
13		Next	line is sta	ndard eri	ror in eac	ch 🛛						
14		R = cc	R = coefficient of determination									
15												
16		sey =	sey = standard error in y									
17		F = F	F = F statistic									
18		df = c	df = degrees of freedom									
19					-							
20												
21												
22												