d-d and f-f absorption bands

Metal ions

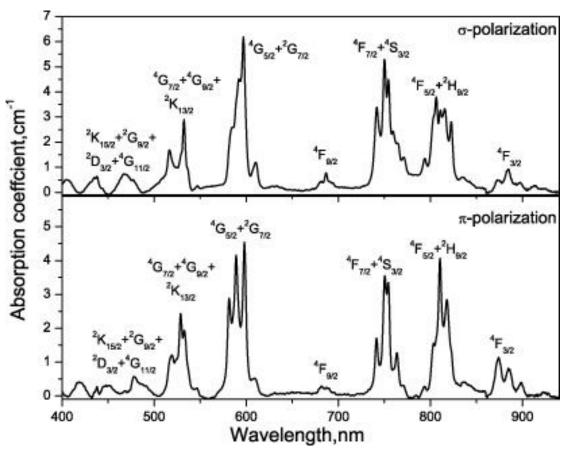
Assays

Matrix solutions

Neodymium spectroscopy: forbidden f-f transitions

The ground state electron configuration of Nd is [Xe]4f⁴6s². However, Nd(III) has a configuration [Xe]4f³. Nd transitions observed in the absorption spectrum start from the

⁴I_{9/2} ground state. Transitions to the following


 2 S+ 1 L_J levels can be observed: 4 F_{3/2}, 2 H_{9/2},

$${}^{4}F_{5/2}$$
, ${}^{4}F_{7/2}$, ${}^{4}S_{3/2}$, ${}^{4}F_{9/2}$, ${}^{2}H_{11/2}$, ${}^{4}G_{5/2}$, ${}^{2}G_{7/2}$,

$${}^{4}G_{7/2}$$
, ${}^{4}K_{13/2}$, ${}^{4}G_{9/2}$ 4, ${}^{2}K_{15/2}$, ${}^{4}G_{11/2}$, ${}^{2}D_{3/2}$

and ${}^{2}G_{9/2}$. The spectrum shown is a high

resolution spectrum of Nd-doped LaTiO₃.

Copper sulfate spectroscopy: forbidden d-d transitions

The ground state electron configuration of Cu is [Ar]3d¹⁰4s¹. However, Cu(II) has a configuration [Ar]3d⁹. In the hexahydrate there is an octahedral ligand field. It is an Unusual case because the water molecules all have the same Cu-O bond length.

Copper (II) Sulfate There is no measurable Jahn-Teller distortion. The electronic transition is LaPorte forbidden. Absorbano d-d transitions are broad.