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Adiabatic compression
Application: measuring heat capacity



Adiabatic Expansion-

Compression Experiment

The laboratory experiment can simultaneously measure   

pressure, volume and temperature since all three of these

are coupled in an adiabatic expansion or compression. 

Don’t lose sight of the fact that the goal of the lab is to 

measure a heat capacity.                 



Adiabatic Processes

Using the form on the previous page we can derive the 

relationship between the volume change and temperature.
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Adiabatic Processes

Using the form on the previous page we can derive the 

relationship between the volume change and temperature.

This expression is great practical value since you can 

predict the temperature of air as it rises.  This phenomenon

leads to rain over mountains and cooling that affects

ecosystems at high elevation.
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Application to meterology

Elevation increases the average rainfall.  This occurs 

because air masses rise as the encounter mountains, 

and as they rise they cool.  Because the lateral heat 

transfer in the atmosphere is poor, we can treat this as an

adiabatic cooling.

In this application we can calculate

the pressure change

but not the volume change with h.



Example: Temperature on 

Mt. Mitchell on a summer day

Assuming that the temperature in Raleigh is nice warm 310 K.

What is the temperature on the top of Mt. Mitchell at 2000 m?

Solution: 

Atmosphere is a diatomic gas so Cp = 7/2nR.

Using the barometric pressure formula to find P = 0.80 atm.



Pressure dependence of 

adiabatic expansion

In an adiabatic expansion all of the variable, P, V and T

can change.

Therefore,



Pressure dependence of 

adiabatic expansion
Solve for V1/V2 and substitute into the formula



Pressure dependence of 

adiabatic expansion
Rearrange the exponent to write it in a compact form:



The “other” PV relation

From the T,P and T,V correlations we can derive a P,V 

correlation 
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The “other” PV relation
Gives
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Where 

𝛾 =
ҧ𝐶𝑝
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This equation suggests a method for measuring heat 

capacity based only on an adiabatic change. The other 

information we need is the well-known thermodynamic 

equation
ҧ𝐶𝑝 = ҧ𝐶𝑣 + 𝑅



Comparison with isothermal processes

An isothermal process is a constant temperature 

process. Therefore

𝑃2𝑉2
𝑃1𝑉1

=
𝑛𝑅𝑇

𝑛𝑅𝑇
And we have

𝑃1𝑉1 = 𝑃2𝑉2

Don’t confuse these two. The assumptions are quite 

different (the path is different!). Keep in mind that for an 

adiabatic process the temperature is not constant, so

𝑃2𝑉2
𝑃1𝑉1

=
𝑛𝑅𝑇2
𝑛𝑅𝑇1



Unlike At and N2, the heat capacity of CO2 is temperature 

dependent. The experimental temperature dependence is 

shown in the Figure.

Temperature dependent heat capacity of carbon dioxide



The average energy of a harmonic oscillator is

𝐸 =
ℎ𝑐 𝜈

𝑒ℎ𝑐𝜈𝛽 − 1

The statistical mechanical heat capacity is
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We can write this as a molar heat capacity with a vibrational 

temperature

θ𝑣 =
ℎ𝑐 𝜈

𝑘



𝐶𝑣 = 𝑅𝑒θ𝑣/𝑇
θ𝑣/𝑇

𝑒θ𝑣/𝑇 − 1
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If we use the fact that there are two vibrational modes in CO2, 

the bending and symmetric stretching mode (ignoring the high-

energy asymmetric stretch), we can calculate a theoretical heat 

capacity shown in the Figure



Analysis of Ar compression data

Our hypothesis is that Ar behaves as a monatomic ideal gas. 

The molar heat capacity at constant volume is 𝐶𝑣 =
3

2
𝑅. Since 

𝐶𝑝 = 𝐶𝑣 + 𝑅 for an ideal gas, 𝐶𝑝 =
5

2
𝑅. We expect that 

𝛾 =
𝐶𝑝
𝐶𝑣

=
5

3
= 1.67

Analysis of several of the argon data sets was carried out by 

calculating

𝛾 = −
𝑙𝑛

𝑃
𝑃𝑜

𝑙𝑛
𝑉
𝑉𝑜



This is shown between the black dots for one of the cycles of 

compression and expansion. Extract both the pressure and 

the volume points from 20788 to 20826. Then we use those 

points to calculate a value of gamma at each point. This 

implies that we will obtain a series of gamma measurements 

from a single compression.

We begin the analysis by selection a region of the 
compression that has little curvature.



Right here we could do statistics and determine the 

standard error. It is interesting to compare this to the error 

obtained starting with volume and pressure and then using 

propagation of error, which you should do! According to this 

formula, all of the data involved in the compression should 

give the same value. We must observe that the application 

of this formula has an artifact on the first point, 𝑃 = 𝑃𝑜 and 

also for 𝑉 = 𝑉𝑜. On this initial point value of the function is 

zero since the logarithm of one is equal to zero. We will 

throw away this point and even a few other points since the 

data appears to improve in quality near the end of the 

compression. This is shown in the Figure.



The initial points are an artifact of the approach used of 

taking the logarithm. To find gamma we can average the 

points after point 5. We know from the formula that the result 

should be a constant and the data after point 5 are pretty 

constant. We can also estimate the error in gamma from 

these data and from comparison of a number of data sets. 

How many should we use? Somewhere from 6-10 data sets 

would be appropriate. Once you have done this the first time 

it begins a production line for the remaining data sets.



For ten data sets we obtain the following 𝛾 shown with the 95% 

confidence limit. We used the appropriate t-value, which 

ranged from 2.05-2.2 depending on the number of data points.

For Ar we obtained an average of 𝛾 = 1.57, which corresponds 

to 𝐶𝑣 =
7

4
𝑅. Given the 95% confidence limit, it was appropriate 

to round to three significant figures. The value of 𝛾 obtained 

from these experiments leads to an overestimation of the heat 

capacity of Ar by 16%. 



The experiment obtained the value. 

𝐶𝑣 =
7

4
𝑅 = 14.5 𝐽/𝑚𝑜𝑙𝐾

The theoretical value is

𝐶𝑣 =
3

2
𝑅 = 12.5 𝐽/𝑚𝑜𝑙𝐾

You will find that this type of discrepancy is not unique to 

Argon. All the gases have a similar percent discrepancy. 

Unfortunately, it is not that small 14-20%. If we can 

understand the reason then the method may still be of 

quantitative value. We could calibrate for example. Three 

possible reasons for deviation are suggested for you to think 

about and research for your lab report.



1. Contamination by water vapor. During a compression 

water could condense if the conditions in the cylinder are 

below the dew point. 

2. Deviation from ideality. You could treat the gases as van 

der Waal’s gases (the parameters are in Atkins and 

DePaula or online). You could estimate how large the 

deviation from ideality is at the maximum compression.

3. Perhaps the device is not ideal. After all it is just a 

Plexiglas cylinder. We are counting on speed to make 

the compression adiabatic. You can see strong 

deviations it you do not pull down fast enough. Perhaps 

even the maximum speed is not enough to completely 

maintain adiabatic conditions.



Starting with the ideal gas law

P =
nRT

V
We can propagate the error in the volume to the error 

in the pressure as follows:

σP =
𝜕P

𝜕V

2

σ 2 =
𝜕P

𝜕V
σV

In this case the derivative is simply solved. Note that 

the absolute value is used here. 

σP =
nRT

V2
σV

Adiabatic compression laboratory example
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Propagation of error in calculation of g
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Propagation of error in calculation of g and Cp

Note that this differs from the relative error of a product

or quotient because of the logarithmic terms. To use this 

equation choose a value of g, V and P near the center of

the adiabatic path.  Then use the definition of g, solve for

Cp and continue the propataion of error into Cp.

The relative error is given by


