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Data analysis of heat capacity measurements of argon, nitrogen and carbon dioxide 

Step 1. Determine the calibration between voltage and volume using linear regression. Note that 

the diameter of the piston is 4.09 cm. Therefore, the area of the piston is  

𝐴 = 𝜋 (
𝑑

2
)

2

 

 

The area is 13.14 cm2. We convert the height to volume in liters and then conduct a linear 

regression on the volume versus the voltage. The linear regression gives a line  

𝑉𝑜𝑙𝑢𝑚𝑒 = 0.07314 + 0.027959 𝑣𝑜𝑙𝑡𝑎𝑔𝑒  

The linear regression is shown in the Figure.  

 

  

The midpoint of the volume is 0.151 L. Next calculate the upper and lower 95% confidence 

limits, using the formula:  

𝜎𝑒 =
𝑅𝑀𝑆𝐸

𝑠𝑙𝑜𝑝𝑒
√

𝑁𝑥2 + ∑ 𝑥𝑖
2

𝑖 − 2𝑥 ∑ 𝑥𝑖𝑖

𝐷𝐷
 

Where DD is 
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 𝑖 𝑖 

The regression gives   

𝑠𝑙𝑜𝑝𝑒 = 0.02796  

And  

𝑅𝑀𝑆𝐸 = 7.71 𝑥 10−5  

The ratio is  

𝑅𝑀𝑆𝐸 

 = 0.00276  

|𝑠𝑙𝑜𝑝𝑒| 

  

  
𝑖 

∑ 𝑥𝑖 = 2.783  

𝑖 

Using Igor the formula is  

0.002796*sqrt((voltage*voltage+9.432-2*voltage*2.783)/(9.432-2.783*2.783)/33)  

The 95% confidence limit is represented by upper and lower bounds shown in the Figure.  
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The practical extraction of the 95% confidence limit of the volume can be obtained graphically.   

  

We find 𝜎𝑉 = 0.0019 L at the midpoint (or average)..The maximum and minimum volumes are 

0.2024 and 0.0824 L, respectively. Given that the calculated volume at the midpoint is 0.150 L, 

the relative error is approximately 1.3%.   

Analysis of Ar compression data 
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Our hypothesis is that Ar behaves as a monatomic ideal gas. Thus, we expect that the molar heat 

capacity at constant volume is 𝐶𝑣 =
3

2
𝑅. Since 𝐶𝑝 = 𝐶𝑣 + 𝑅 for an ideal gas we also expect 𝐶𝑝 =

5

2
𝑅. Therefore, we expect that  

𝛾 =
𝐶𝑝

𝐶𝑣
=

5

3
= 1.67 

We begin the analysis by selection a region of the compression that has little curvature. 

 

This is shown between the black dots for one of the cycles of compression and expansion. 

Extract both the pressure and the volume points from 20788 to 20826. Then we use those points 

to calculate a value of gamma at each point. Analysis of several of the argon data sets was 

carried out by calculating 

𝛾 = −
𝑙𝑛 (

𝑃
𝑃𝑜

)

𝑙𝑛 (
𝑉
𝑉𝑜

)
 

This implies that we will obtain a series of gamma measurements from a single compression. 

Right here we could do statistics and determine the standard error. It is interesting to compare 

this to the error obtained starting with volume and pressure and then using propagation of error, 

which you should do! According to this formula, all of the data involved in the compression 

should give the same value. We must observe that the application of this formula has an artifact 

on the first point, 𝑃 = 𝑃𝑜 and also for 𝑉 = 𝑉𝑜. On this initial point value of the function is zero 

since the logarithm of one is equal to zero. We will throw away this point and even a few other 

points since the data appears to improve in quality near the end of the compression. This is 

shown in the Figure. 
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The initial points are an artifact of the approach used of taking the logarithm. To find gamma we 

can average the points after point 5. Indeed, this is arbitrary. However, we know from the 

formula that the result should be a constant and the data after point 5 are pretty constant. We can 

also estimate the error in gamma from these data and from comparison of a number of data sets. 

How many should we use? I gave you lots of data so you could see if there is any variation. I 

would use some data from each data set and perhaps check a few. Somewhere from 6-10 data 

sets would be appropriate. Once you have done this the first time it begins a production line for 

the remaining data sets. 

For ten data sets we obtain the following 𝛾 shown with the 95% confidence limit. The latter was 

obtained by multiplying by the appropriate t-value, which ranged from 2.05-2.2 depending on the 

number of data points. 

 

For Ar we obtained an average of 𝛾 = 1.57, which corresponds to 𝐶𝑣 =
7

4
𝑅. Given the 95% 

confidence limit, it was appropriate to round to three significant figures.  
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This value of 𝛾 obtained from these experiments leads to an overestimation of the heat capacity 

of Ar by 16%. One reason we can suspect is that possible presence of trace water vapor in the 

gas. As the Ar gas was compressed we observed formation of a cloud, which could be from 

condensation as water vapor is compressed. Although the temperature increases by 20% during 

the compression the pressure increases by a factor of 2.7. The partial pressure of water increases 

in parallel. Thus, if water is present it surpasses the dew point during the compression. The 

experiment obtained the value.  

𝐶𝑣 =
7

4
𝑅 = 14.5 𝐽/𝑚𝑜𝑙𝐾 

The experimental value is 

𝐶𝑣 = 12.2 𝐽/𝑚𝑜𝑙𝐾 

The theoretical value is 

𝐶𝑣 =
3

2
𝑅 = 12.5 𝐽/𝑚𝑜𝑙𝐾 

Aside from the possibility of contamination by water vapor, one should also bear in mind that the 

assumption of ideality of the gas begins break down for pressures above atmospheric pressure.  

No matter which gas we use for the measurement, this method gives us an overestimate of 

approximately 20%. There is a systematic error that may have arisen due to experimental design.  

There is a number of factors we have ignored in our treatment. 

1. The heat capacity of some of the gasses is temperature dependent and the experiment 

results in a significant increase in temperature during the compression. We are trying to 

measure a quantity that is changing under our experimental conditions (a moving target). 

2. We have assumed ideal gas behavior. While that is normally a good assumption at 1 bar 

of pressure, the pressure in this experiment can be nearly 5 bars in some data sets. Note 

that 1 bar = 1.0132 atm, and therefore we can assume that they are approximately equal. 

Are there deviations from ideality that may affect the results? 

3. There could be impurities. Particularly in the argon experiment we observed interesting 

behavior that appeared to be condensation. We cannot be sure, but it could be that there is 

trace water vapor. This seems a little unlikely except for the fact that the argon tank in 

particular is very old. This explanation could not apply to all three gases. There cannot be 

trace water in the CO2 tank (why?). 

4. The may be deviations from adiabatic behavior.  

The temperature dependent heat capacity of carbon dioxide 

Unlike At and N2, the heat capacity of CO2 is temperature dependent. The experimental 

temperature dependence is shown in the Figure. 



7 
 

 

The average energy of a harmonic oscillator is 

〈𝐸〉 =
ℎ𝑐𝜈

𝑒ℎ𝑐�̃�𝛽 − 1
 

The statistical mechanical heat capacity is 

〈𝐶𝑣〉 = −𝑘𝛽2
𝜕

𝜕𝛽
(

ℎ𝑐𝜈

𝑒ℎ𝑐�̃�𝛽 − 1
) 

 

〈𝐶𝑣〉 = 𝑘𝑒ℎ𝑐�̃�𝛽 (
ℎ𝑐𝜈𝛽

𝑒ℎ𝑐�̃�𝛽 − 1
)

2

 

We can write this as a molar heat capacity with a vibrational temperature 

θ𝑣 =
ℎ𝑐𝜈

𝑘
 

 

〈𝐶𝑣〉 = 𝑅𝑒θ𝑣/𝑇 (
θ𝑣/𝑇

𝑒θ𝑣/𝑇 − 1
)

2

 

If we use the fact that there are two vibrational modes in CO2, the bending and symmetric 

stretching mode (ignoring the high-energy asymmetric stretch), we can calculate a theoretical 

heat capacity. We must recall that the bending mode is doubly degenerate so its contribution will 

be twice as large. The comparison of experiment and calculation is given in the Figure. 
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Considering the discrepancies between data and experiment 

There appears to be a systematic error in the experiment. We have suggested an impurity of 

water as one possibility. However, we also should consider that the pressures in this experiment 

may cause increases in the deviation from ideality that would invalidate the assumption of Cp = 

Cv + R and result in corrections to the pressure. One way to estimate such effects is to use a non-

ideal equation of state, such as the van der Waal’s gas. The van der Waal’s equation of state 

includes the hard-sphere equation of state with an excluded volume nb, and an attractive term 

n2a2. 

𝑃 =
𝑛𝑅𝑇

(𝑉 − 𝑛𝑏)
−  

𝑛2𝑎2

𝑉2
 

We often use the molar form 

𝑃 =
𝑅𝑇

(𝑉𝑚 − 𝑏)
−  

𝑎2

𝑉𝑚
2
 

Calculation of corrections to the pressure of a van der Waal’s gas 

We have seen that the derivatives of P, V and T are related by a cyclic permutation and are also 

related to the expansion coefficient and isothermal compressibility. We have the following 

relations  

(
𝜕𝑉𝑚

𝜕𝑇
)

𝑃
= 𝛼𝑉𝑚 ;  (

𝜕𝑉𝑚

𝜕𝑃
)

𝑇
= −𝜅𝑉𝑚 ;  (

𝜕𝑃

𝜕𝑇
)

𝑉
=

𝛼

𝜅
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To calculate these for a van der Waal’s gas we can use implicit differentiation. There are several 

ways to write the van der Waal’s gas equation. Starting with the form based on molar volume: 

𝑃 =
𝑅𝑇

𝑉𝑚 − 𝑏
−

𝑎

𝑉𝑚
2
 

We can solve for RT to compare the equation more conveniently with the ideal gas law: 

(𝑃 +
𝑎

𝑉𝑚
2

) (𝑉𝑚 − 𝑏) = 𝑅𝑇 

To understand the deviation from ideality with more depth we define the “real” pressure and 

molar volume as: 

𝑃𝑣𝑑𝑤𝑉𝑚,𝑣𝑑𝑤 = 𝑅𝑇 

The real pressure (or van der Waal’s pressure if you like) includes the internal pressure: 

𝑃𝑣𝑑𝑤 = 𝑃 +
𝑎

𝑉𝑚
2

= 𝑃 + 𝜋𝑇 

Note that this van der Waal’s pressure is larger than the measured pressure because of the 

cohesive forces in the gas. In an adiabatic compression 𝑉𝑚 decreases substantially as the pressure 

increases. Thus, 𝜋𝑇 increases during the compression. One could correct each pressure in the 

compression using this term. For argon it is approximately a correction of approximately one 

percent.   

𝑎

𝑉𝑚
2

=
1.355

6.152
= 0.035 𝑏𝑎𝑟 

The pressure corresponding to this molar volume is  

𝑃 =
𝑅𝑇

𝑉𝑚
=

(0.0831)(360)

6.15
= 4.8 𝑏𝑎𝑟 

 

Calculation of Cp – Cv for a van der Waal’s gas 

The real molar volume includes the excluded molar volume term, b: 

𝑉𝑚,𝑣𝑑𝑤 = 𝑉𝑚 − 𝑏 

 

We can obtain the derivatives needed using implicit differentiation. Starting with the temperature 

differentiate both sides by T: 
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𝜕

𝜕𝑇
[(𝑃 +

𝑎

𝑉𝑚
2

) (𝑉𝑚 − 𝑏)] =
𝜕

𝜕𝑇
𝑅𝑇 

 

Treating P as a constant but Vm as a function of T, using the product rule we obtain: 

 

−2
𝑎

𝑉𝑚
3 (

𝜕𝑉𝑚

𝜕𝑇
) (𝑉𝑚 − 𝑏) + (𝑃 +

𝑎

𝑉𝑚
2

) (
𝜕𝑉𝑚

𝜕𝑇
) = 𝑅 

 

(
𝜕𝑉𝑚

𝜕𝑇
) =

𝑅

𝑃 −
𝑎

𝑉𝑚
2 +  2

𝑎𝑏
𝑉𝑚

3

 

 

We use the same method to obtain the derivative with respect to P: 

  
𝜕

𝜕𝑃
[(𝑃 +

𝑎

𝑉𝑚
2

) (𝑉𝑚 − 𝑏)] =
𝜕

𝜕𝑃
𝑅𝑇 

 

Now holding T constant we have: 

 

(1 − 2
𝑎

𝑉𝑚
3 (

𝜕𝑉𝑚

𝜕𝑃
)) (𝑉𝑚 − 𝑏) + (𝑃 +

𝑎

𝑉𝑚
2

) (
𝜕𝑉𝑚

𝜕𝑃
) = 0 

 

First, moving the term that does not depend on the derivative to the right hand side: 

 

(−2
𝑎

𝑉𝑚
3) (𝑉𝑚 − 𝑏) (

𝜕𝑉𝑚

𝜕𝑃
) + (𝑃 +

𝑎

𝑉𝑚
2

) (
𝜕𝑉𝑚

𝜕𝑃
) = −(𝑉𝑚 − 𝑏) 

 

And collecting terms on the left hand side we obtain: 
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(𝑃 −
𝑎

𝑉𝑚
2

+  2
𝑎𝑏

𝑉𝑚
3) (

𝜕𝑉𝑚

𝜕𝑃
) = −(𝑉𝑚 − 𝑏) 

so that: 

(
𝜕𝑉𝑚

𝜕𝑃
) =

−(𝑉𝑚 − 𝑏)

𝑃 −
𝑎

𝑉𝑚
2 +  2

𝑎𝑏
𝑉𝑚

3

 

 

To check these derivatives let’s calculated 𝜕𝑃/𝜕𝑇 and see if it is true that 

 

(
𝜕𝑃

𝜕𝑇
)

𝑉𝑚

(
𝜕𝑇

𝜕𝑉𝑚
)

𝑃

(
𝜕𝑉𝑚

𝜕𝑃
)

𝑇
= −1 

This implies that 

(
𝜕𝑃

𝜕𝑇
)

𝑉𝑚

= −

(
𝜕𝑉𝑚

𝜕𝑇
)

𝑃

(
𝜕𝑉𝑚

𝜕𝑃
)

𝑇

=
𝛼

𝜅
 

The derivative is: 

(
𝜕𝑃

𝜕𝑇
)

𝑉𝑚

=
𝑅

𝑉𝑚 − 𝑏
 

and 

𝛼 =  
1

𝑉𝑚
(

𝑅

𝑃 −
𝑎

𝑉𝑚
2 +  2

𝑎𝑏
𝑉𝑚

3

) =  
𝑅

𝑃𝑉𝑚 −
𝑎

𝑉𝑚
+  2

𝑎𝑏
𝑉𝑚

2

 

 

𝜅 = − 
1

𝑉𝑚
(

𝑉𝑚 − 𝑏

𝑃 −
𝑎

𝑉𝑚
2 +  2

𝑎𝑏
𝑉𝑚

3

) = −
𝑉𝑚 − 𝑏

𝑃𝑉𝑚 −
𝑎

𝑉𝑚
+  2

𝑎𝑏
𝑉𝑚

2

 

Indeed, we see that it is true that: 

(
𝜕𝑃

𝜕𝑇
)

𝑉𝑚

=
𝛼

𝜅
=

𝑅

𝑉𝑚 − 𝑏
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Since the denominators in 𝛼 and 𝜅 are identical and therefore cancel. 

𝐶𝑃 − 𝐶𝑉 =
𝛼2𝑇𝑉𝑚

𝜅
 

 

𝐶𝑃 − 𝐶𝑉 = (
𝑅

𝑉𝑚 − 𝑏
)

𝑅𝑇𝑉𝑚

(𝑃𝑉𝑚 −
𝑎

𝑉𝑚
+  2

𝑎𝑏
𝑉𝑚

2)
 

 

𝐶𝑃 − 𝐶𝑉 =
𝑅2𝑇𝑉𝑚

(𝑉𝑚 − 𝑏) (𝑃𝑉𝑚 −
𝑎

𝑉𝑚
+  2

𝑎𝑏
𝑉𝑚

2)
 

Another way to write this expression that eliminates the temperature and clarifies the meaning of 

the ratio is: 

𝐶𝑃 − 𝐶𝑉 = [
𝑃𝑉𝑚

2

(𝑉𝑚 − 𝑏) (𝑃𝑉𝑚 −
𝑎

𝑉𝑚
+  2

𝑎𝑏
𝑉𝑚

2)
] 𝑅 

Obviously, if a = b = 0, the ration in the square brackets is 1 as expected for an ideal gas. 

For argon the maximum pressure is 4.8 bars. The molar volume is 6.15 L/mol. The van der 

Waals parameters for argon are 

𝑎 = 1.355 𝐿2𝑏𝑎𝑟/𝑚𝑜𝑙2 

𝑏 = 0.032 𝐿/𝑚𝑜𝑙 

Thus, the ratio for argon is 

𝑟𝑎𝑡𝑖𝑜 =  [
(4.8)(6.15)2

(6.118) ((4.8)(6.15) −
1.355
6.15

+  2
(1.355)(0.032)

(6.15)2 )
] 

 

𝑟𝑎𝑡𝑖𝑜 =  [
(6.15)(29.5)

(6.118)(29.3)
] = 1.01 

The van der Waals parameters for CO2 are 
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𝑎 = 3.640 𝐿2𝑏𝑎𝑟/𝑚𝑜𝑙2 

𝑏 = 0.0426 𝐿/𝑚𝑜𝑙 

Thus, the ratio for CO2 is 

𝑟𝑎𝑡𝑖𝑜 =  [
(4.8)(6.15)2

(6.107) ((4.8)(6.15) −
3.64
6.15

+  2
(3.64)(0.0426)

(6.15)2 )
] 

 

𝑟𝑎𝑡𝑖𝑜 =  [
(6.15)(29.5)

(6.107)(28.94)
] = 1.027 

 

If Cv = 30 J/mol-K, then  

𝛾 =
30 + (1.027)(8.31)

30
= 1.284 

Compared to 1.277 for an ideal gas. For CO2 the difference is not negligible given the 

experimental accuracy, however, including the deviation from ideality only increases the 

theoretical value of 𝛾. This result does not help to explain the smaller value of 𝛾 obtained by 

experiment. 

Losses as the origin of the experimental discrepancy 

The fatal flaw of this experiment is that the plexiglass cylinder is a poor insulator. We can be 

sure that there is some heat loss. The problem is that we do not know how much. We do know 

that as the volume is mechanically decreased the measured pressure would be decreased by any 

thermal losses. That is because for a fixed mechanical volume, the pressure would be lower than 

expected according to the formula if the temperature were lower than expected because of losses. 

We should measure the temperature!  

Since we do not have a good temperature sensor at present we can model the effect and see if it 

is reasonable. If we assume that the losses due to heat transfer grow as the temperature increases 

(i.e. the thermal gradient with respect to the ambient temperature increases), then we can 

calculate what the pressure would be in the absence of these losses. Let’s assume that the losses 

are 1% at the maximum temperature of 360 K. Then the pressure is actually less by 

approximately  

𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑃𝑒𝑥𝑚𝑝𝑡 (
𝑇𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

𝑇𝑒𝑥𝑚𝑝𝑡
)

𝐶𝑝/𝑅
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In this equation, we assume that the loss due to heat transfer leads to an experimental 

temperature that is 1% smaller than it would be in a truly adiabatic cylinder. The effect on the 

pressure is substantial. 

4.97 𝑏𝑎𝑟 = (4.80 𝑏𝑎𝑟) (
1 .0

0.99
)

7/2

 

This type of correction has the same effect as the van der Waal’s internal pressure correction, but 

is significantly larger. The effect of a 1% loss is a nearly 3% reduction in the pressure compared 

to expectation. This correction tends to increase 𝛾 because the true pressure is increased by 

taking losses into account. This model is still not ideal, but it does suggest that very small 

thermal losses are the most likely origin for the discrepancy with experiment. 


