Non-linear least squares

The sum of squares of residuals

Consider a set of m data points, $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots .$. $\left(x_{m}, y_{m}\right)$ and a curve (model function) $y=f(x, \beta)$ that in addition to the variable x also depends on n parameters, $\beta=$ $\left(\beta_{1}, \beta_{2}, \ldots \beta_{\mathrm{n}}\right)$ with $\mathrm{m}>\mathrm{n}$. It is desired to find the vector β of parameters such that the curve fits best the given data in the least squares sense, that is, the sum of squares

$$
S=\sum_{i=1}^{m} r_{i}^{2}
$$

is minimized, where the residuals (errors) r_{i} are given by

$$
r_{i}=y_{i}-f\left(x_{i}, \beta\right)
$$

for $i=1,2, \ldots . m$.

The minimization criterion

The minimum value of S occurs when the gradient is zero. Since the model contains n parameters there are n gradient equations:

$$
\frac{\partial S}{\partial \beta_{j}}=2 \sum_{i} r_{i} \frac{\partial r_{i}}{\partial \beta_{j}}=0(j=1, \ldots . . n)
$$

In a non-linear system, the derivatives are functions of both the independent variable and the parameters, so these gradient equations do not have a closed solution. Instead, initial values must be chosen for the parameters. Then, the parameters are refined iteratively, that is, the values are obtained by successive approximation,

$$
\beta_{j} \approx \beta_{j}^{k+1}=\beta_{j}^{k}+\Delta \beta_{j}
$$

Calculation of the residuals

Here, k is an iteration number and the vector of increments, $\Delta \beta$ is known as the shift vector. At each iteration the model is linearized by approximation to a first-order Taylor's series expansion about β^{k}

$$
f\left(x_{i}, \beta\right) \approx f\left(x_{i}, \beta^{k}\right)+\sum_{j} \frac{\partial f\left(x_{i}, \beta^{k}\right)}{\partial \beta_{j}}\left(\beta_{j}-\beta_{j}^{k}\right) \approx f\left(x_{i}, \beta^{k}\right)+\sum_{j} J_{i j} \Delta \beta_{j}
$$

The Jacobian, \mathbf{J}, is a function of constants, the independent variable and the parameters, so it changes from one iteration to the next. Thus, in terms of the linearized model,

$$
\frac{\partial r_{i}}{\partial \beta_{i}}=-J_{i j}
$$

and the residuals are given by

$$
r_{i}=\Delta y_{i}-\sum_{s=1} J_{i s} \Delta \beta_{s} ; \Delta y_{i}=y_{i}-f\left(x_{i}, \beta^{k}\right)
$$

The normal equations in matrix form

Substituting these expressions into the gradient equations, they become

$$
-2 \sum_{i=1}^{m} J_{i j}\left(\Delta y_{i}-\sum_{s=1}^{n} J_{i s} \Delta \beta_{s}\right)=0
$$

which, on rearrangement, become n simultaneous linear equations, the normal equations

$$
\sum_{i=1}^{m} \sum_{s=1}^{n} J_{i j} J_{i s} \Delta \beta_{s}=\sum_{i=1}^{m} J_{i j} \Delta y_{i}
$$

for $\mathrm{j}=1, \ldots ., \mathrm{n}$.
The normal equations are written in matrix notation as

$$
\left(J^{T} J\right) \Delta \beta=J^{T} \Delta y
$$

Weighted sum of squares

When the observations are not equally reliable, a weighted sum of squares may be minimized,

$$
S=\sum_{i} W_{i i} r_{i}^{2}
$$

Each element of the diagonal weight matrix W should, ideally, be equal to the reciprocal of the error or variance of the measurement. The normal equations are then

$$
\left(J^{T} W J\right) \Delta \beta=J^{T} W \Delta y
$$

These equations form the basis for the Gauss-Newton algorithm for a non-linear least squares problem.

The parameter surface

In linear least squares the objective function, S, is a quadratic function of the parameters.

$$
S=\sum_{i} W_{i i}\left(y_{i}-\sum_{j} X_{i j} \beta_{j}\right)^{2}
$$

The minimum parameter values are to be found at the minimum of a surface in parameter space. With two or more parameters the contours of S with respect to any pair of parameters will be concentric ellipses.

Approximating the surface as a quadratic

The objective function is quadratic with respect to the parameters only in a region close to its minimum value, where the truncated Taylor series is a good approximation to the model.

$$
S \approx \sum_{i} W_{i i}\left(y_{i}-\sum_{j} J_{i j} \beta_{j}\right)^{2}
$$

The more the parameter values differ from their optimal values, the more the contours deviate from elliptical shape. A consequence of this is that initial parameter estimates should be as close as practicable to their (unknown!) optimal values. It also explains how divergence can come about as the Gauss-Newton algorithm is convergent only when the objective function is approximately quadratic in the parameters.

Read in the macro for two Gaussians

File Edit Data Analysis Macros Windows Procedure Misc Help

Select the macro in the Curve Fitting menu

Make an initial guess of fitting parameters

File Edit Data Analysis Macros Windows Graph Misc Help
Graph0:absorb vs lamda;..
Curve Fitting

Function and Data	Data Options	Coefficients 0 Output Options

Coefficient Wave: wave0 \square Graph Now Epsilon Wave:

Coef Name	Initial Guess	Hold?	Constraints:	
w_0	20	\square		< w-
*_1	422	\square		< w-
*_2	15	回		< w
w_3	12	\square		< $w_{-} 3$

(-) Equation

- Commands
Variable a0, a1, x0, x1, sig0, sig1 Varia
Dolt To Cmd Line To Clip No Erro

Do it

File Edit Data Analysis Macros Windows Graph Misc Help

Graph0：absorb vs lamda；．．．

\square 回

