
Tutorial 6. Non-linear fitting 
 

Non-linear fitting 
 
As we have seen the matrix formula (XTX)-1XTY allows us to calculate the least squares 
estimates in a variety of models, provided these models are linear in the parameters β. In many 
cases we cannot linearize our fitting problem. Fortunately you can still minimize the residuals 
(actually their sum of squares SS) with a very similar formula (JTJ)-1JTY.  
 
The difference between the two is that X only contains information on where we take our data 
(our independent variables). J however also depends on the parameters themselves. In fact J 
contains the derivatives of the fit function f(x; β) versus each parameter in each chosen data 
point. 
This means that we need to have an idea of what β is before we can compute J. It also means 
that (JTJ)-1JTY will only give us a better estimate of β, not the best. That’s no problem: we can 
keep applying the process until no more improvement is observed.  This iteration process is 
called refinement.  
 

1. make guess of parameters 
2. calculate the J matrix based on that guess 
3. calculate (JTJ)-1JTY to get better parameters β, 
4. if this is an improvement go to step 1; if not stop process 

 
 
What refinement does is look for the minimum in the SS function. However this function is now 
like a landscape with hills and valleys, not a single well. Therefore the procedure will only work 
if your initial guess for β is close enough to the final minimum. Otherwise the procedure gets 
lost in the hills. 
 
The final (JTJ)-1 matrix and Sum of Squares tells you the uncertainties in the final parameters, 
just like its cousin (XTX)-1  did. Because you have to terminate the refinement process 
somewhere (if improvement is less that some criterion) these values are known as asymptotic 
standard errors and (JTJ)-1 produces an asymptotic variance covariance matrix. 
 
Excel contains an add-in that will do all this for you and we will fit some data with it. The add-in 
is called the solver. The instructor/TA will help you to make sure it is loaded. Unfortunately the 
Excel solver does not produce values for the uncertainties, but the book Excel for Chemist by J. 
Billo has another module on its CD that remedies that. 

The data 



 
The data we will be fitting comes from the TGA, in fact it is a decomposition run on Calcium 
oxalate monohydrate (CaC2O4.H2O). It represents a series of decomposition reactions the 
oxalate as the temperature is ramped to 1000oC.: 
 
CaOx.H2O CaOxCaCO3CaO 
 
The first step produces water vapor, the second CO and the third one CO2. 
 
Open the Non-lin excel spreadsheet. Select the data block and make a graph (line only) of the 
data in the C column (weight) versus the A column (time). We will work in time, but as the oven 
was ramped at constant heating rate we could easily translate time into temperature (in the B 
column). 
 
The Model Function 
 
The biggest problem with fitting data is always to formulate a reasonable model. More often 
than not you do not know ‘the’ model and this is a good example: a good physical model is not 
known for this kind of data. The graph certainly makes it obvious a straight line will not do!  
Deviations from straight can often be modeled by adding higher order terms (a polynomial) but 
this is not recommended for this type of data.  
Sigmoidal (S-shaped) step functions are notorious for requiring an infinite number of terms to 
fit well.  This violates the parsimony principle: always try to retain as many degrees of freedom 
as you can, or stated differently: is you can fit something with three variables, do not fit it with 
300. If you throw in enough parameters you can fit even the kitchen sink! This is why we fit this 
with a function that already has a sigmoidal shape, the logistic function lgt(x): 

𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥) =
𝑒𝑒𝑥𝑥

1 + 𝑒𝑒𝑥𝑥
 

We can fit every decomposition event as: 
 

𝑊𝑊𝑜𝑜𝑙𝑙𝑙𝑙𝑙𝑙(𝑎𝑎 − 𝑏𝑏𝑏𝑏) 
 
As you see there are three parameters (not 300!) per event: Wo, a and b.  Wo stands for the 
amplitude of the change (the entire weight loss of the event).  The time around which the event 
happens is tevent= -a/b and the value of b represents the slope in the weight curve at this time 
(how sudden the event takes place). As we are losing weight its value is always negative in our 
case. As we have three events, but do not lose all weight the total fit function becomes 
 

𝑊𝑊(𝑡𝑡) = 𝑊𝑊𝑜𝑜,1𝑙𝑙𝑙𝑙𝑙𝑙(𝑎𝑎1 − 𝑏𝑏1𝑡𝑡) + 𝑊𝑊𝑜𝑜,2𝑙𝑙𝑙𝑙𝑙𝑙(𝑎𝑎2 − 𝑏𝑏2𝑡𝑡) + 𝑊𝑊𝑜𝑜,3𝑙𝑙𝑙𝑙𝑙𝑙(𝑎𝑎3 − 𝑏𝑏3𝑡𝑡) + 𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
 
As you see we have a total of ten parameters: 3+3+3+1. 
It is advisable to build up such a fit job systematically in your sheet and not write out a function 
like this in one cell as you are bound to make mistakes. 
 



• First copy the entire data block (three columns) and open a new sheet and paste it in 
cell A8, B8 and C8. It consists of 1452 points so that the three columns should be filled 
down to line 1460. 

• Now put the following initial guesses for the parameters in the range C1:G4 including 
the labels. The numerical parameters should be in D2:G4. 

 first second Third final 
W 2 3 5 7 
A 15 40 35  
B 2 2 1  

1. Type in C6: t-event  
2. Type in D6: -D3/D4 
3. Copy D6 over D6:F6 
4. Type in D8: =D$3-D$4*$A8  (this calculates a-bt  for the first event) 
5. Copy D8 over D8:F8  
6. Type in G8: =EXP(D8)/(1+EXP(D8)) (The lgt function) 
7. Copy G8 over G8:I8 
8. Type in J8: =$D$2*G8+$E$2*H8+$F$2*I8+$G$2 (This computes the W(t) fit function) 

9. For plotting purposes we will copy the relevant columns: 
10. Type in K8: =A8; (time)  
11. Type in L8:  =C8 (the measured weight) 
12. Type in M8: =J8 (the fit function) 
13. Type in N8: =L8-M8 (the residual) 
14. Now select D8:N8 and use the double click on the + symbol that appears on the 

bottom right corner of N8 to double click and fill all your calculations over the whole 
data set. 

15. Select the K,L and M functions and make a chart with only lines of the measured and 
calculated data. 

16. You can now change the values in the parameter block to make the function fit a bit 
better.  It is useful to change them by hand to get a feel for what they do. If the new 
guess is really bad, just hit Ctrl+z to correct your mistake.  Here is a trial example 
using the input data set from the website. 

17. n e.g. M4 type =SUM(N8:N1459^2)/1450/STDEV^2. To activate this formula use 
<Shift> <ctrl> <Enter>. This calculates the a value known as chi-squared,  
 

𝜒𝜒2 =
∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2

𝑁𝑁𝜎𝜎2
 

 



Chi-squared is the sum of the squares (SS) divided by the number of data points and 
STDEV, where STDEV is the standard deviation in your data. You may estimate 
STDEV using a flat section of the data to generate a series of numbers. Then you can 
calculate the STDEV for this section.  Remember that STDEV is equal to,  
 

𝜎𝜎 = �∑(𝑦𝑦𝑖𝑖 − 〈𝑦𝑦〉)
𝑀𝑀

 

 
where M is the number of data points in the short section you are using to calculate 
the STDEV. M is not at all the same as the value of N you used above, which consists 
of all of the points in the data set. 

18. Try a change in one of the parameters and look at the value of SS. It should get 
lower as the fit gets better. When you have obtained an initial guess that is 
reasonably close to the shape of the data then you can use the solver to get a better 
fit. 

19. Now run the solver. It should be under Data. 
20. On the pop up click the icon with the red dot of the set target cell option and select 

the cell that contains the SS (M4) 
21. Then click the Min  option of the Set equal to set. (We want to minimize SS!!) 
22. Click the red dot icon of the By changing cells block an select the cell that contains 

the final weight. Then click solve. 

You can choose which parameters you want to run first. Often it is wise not to take too many 
parameters at once, but once you are close enough to a good fit you can select then all at once. 
E.g. you can click the red dot icon and select D2:F4 then type a comma and then click G2 to get 
them all. The fit is not bad but not ideal either. Make a plot of the residuals to see how bad it is!  

In programs that use non-linear least squares fitting the errors in the parameters can be 
output using the second derivative of the JTJ matrix to estimate the root-mean-square error in 
each parameter. It is important to have the correct weights for the estimate (i.e. the error 
should be calculated for displacements of the fitted curve relative to the σ you calculated 
above for a flat portion of the data). This type of analysis has numerous assumptions that may 
be incorrect. The error in the data may be larger than the σ you calculate. The curvature of the 
JTJ matrix may have significant distortions from a quadratic shape. And so on. For this reason 
we will use another method to estimate the quality of the fit using a comparison of the the 
parameters to a physical model. This is often a useful approach and has more significance for 
the scientist than a number that comes from a statistical analysis that has possible numerical 
inaccuracies. 
 
Let us make a hypothesis: we have obtained four weights from the regression, let us assume 
they correspond to the compounds H2O, CO, CO2 and finally CaO.  



1. Compute the molar masses for these four compounds and plot the weights against the 
molar masses. This should give a straight line. The weight of the CaO is only correct if 
the instrument was properly calibrated.  

2. Do a linear regression of the weights against the Mw. How many moles of Ca did the 
sample contain? 

3. Using the slope and intercept compute an estimated weight for each compound and 
determine the absolute value of the residual from the regression line. These residuals 
should correspond to the asymptotic standard errors in the weights, which we did not 
calculate (it can be obtained from the covariance matrix JTJ as discussed above). To get a 
better feeling for how important the residuals for each point (i.e. �(𝑦𝑦𝑖𝑖 − 〈𝑦𝑦〉)2) you 
could divide the residual by the standard deviation for the straight line fit. 

4. What does the result say about the chemistry? 
 

Assignment in peak fitting 
 
Go to sheet 2 of the nonlin spreadsheet.  
 
I generated some data for you. They consist of two partially overlapping Gaussian peaks. I made 
a version with two different noise levels. As these data are generated ones you may expect the 
final residuals to be random noise only. (Check residuals. Real data may not always be so nice.) 
 
The data represent a problem that is often encountered in science, that of peak resolution. In 
many techniques we get a pattern consisting of a series of signals each in the form of a peak. 
This is true for spectra, for thermograms, for chromatograms and many other types of data 
alike.  
 
The peaks can have a variety of shapes. Gaussians are the simplest one and we will only do 
those today. Unfortunately peaks may overlap. The more they do the harder it is to separate 
the two signals and derive independent information from them. Limited overlap can be 
overcome by peak fitting. 
 
Caution: 
 Peak fitting works reasonably well if: 

• the overlap is not too large, 
• there are not too many peaks involved, 
• you know how many there should be, 
• you know what shape they should have (Gaussian, Lorentzian etc.) 
• the noise level is low 
• the peaks are not too broad 
• the peaks are (more or less) symmetrical 

 



If any of these requirements are violated, peak fitting notoriously yields various different 
solutions that are fit equally well but are quite incorrect. In other words: you can get out what 
you want by changing the model….  
 
This is why in e.g. chromatography people try to avoid overlap, e.g. by choosing a different 
internal standard that does not overlap. Instrument builders also try to make their broadening 
factor as small as possible to avoid or diminish overlap trouble. However overlap cannot always 
be avoided and fitting may be all you can do. The parsimony principle applies here: always fit 
with as few parameters as possible while demonstrating the fit is as perfect as random noise 
allows. (Look at residuals!) 
 
There are other statistical methods that do allow you to use overlapping data, but they typically 
require that you do not have one spectrum, but a series of them, e.g. taken as a function of 
time 
 

The data 
 
For each of the ‘spectra’ that I generated, use non-linear fitting to determine the amplitude, the 
position and the width of the two overlapping peaks, i.e. six parameters in total. In Excel a 
Gaussian function f(x) is easily generated by the function: 
 
 =amplitude*NORMDIST(x,position,width,0) 
 
Add two of these terms to generate a fit model. Note that in Excel the NORMDIST function is 
normalized. This means that it integrates to unity. Thus the amplitude parameter is 
automatically also the integration value of each peak. 
 
In order to use solver you will also need to generate a target. Our target is chi-squared (𝜒𝜒2), 
which is defined as above. 
 
I used integer values to generate the data for all six parameters. How large is the bias, i.e. the 
difference between the parameters you find and the nearest integer? How does the noise level 
of the data influence the bias? What would happen if the noise level would get larger? What if 
the peaks got broader? Closer together? 
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