
Tutorial 4. Fast Fourier Transforms 

 

Phase factors 
There are functions that produce roots-of-one as a function of time (t) or place (x). A 
good example is a Bloch function φ(x) = exp(i kx) or the phase factor φ (t)= 
exp(2πiνt)= exp(iωt).  The first is a function of location (x), the latter of time (t). In 
both cases the function runs around on the unit circle we have seen before. 

 
Notice for the latter that there are two conventions for the frequency. If we use ω 
the factor 2π is usually considered included in the frequency ω. (The same holds for 
the wave vector k in the Bloch function). You probably have run into these functions 
before because they are used a lot in science. 

 
The phase factor is exactly what the name says: If I multiply by such a factor I leave 
all magnitudes intact but I impart a certain phase in the complex plane to my value. 
Thinking in the complex plane all I do is: rotate along the unit circle, not stretch or 
contract its radius. This property is the basis for the Fourier transform. If I have a 
measurement f(t) as a function of time I can analyze it by frequency by multiplying 
with a phase factor φ (t; ω) = e-iωt and integrating it over all time: 
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Essentially all you do here is label each measurement with a phase angle leaving all 
magnitudes intact and see what that gives over your whole data set for a given 
frequency. In quantum mechanical terms: I am computing an overlap integral to see 
if my function f(t) contains φ (t; ω). (Yes, my phase factors are an orthogonal set: no 
overlap between them ever). Another way of looking at it is to think of my data as a 
moving string frozen in time and now I decompose all motion in its normal modes 
(like you do with vibrating molecules). Each frequency represents a normal mode.  
  

Wave forms 
A Fourier series is a decomposition of a repeating wave in terms of sinusoidal 
functions. A Fourier transform (FT) is the integral representation of the type of 
decomposition. An FT can also be carried out on a non-repeating wave form e.g. 
Gaussian or Lorentzian functions. Four important types of wave forms are shown in 
the figure below for reference as we proceed with the lab. 



 

Fourier transforms 
This remarkable decomposition operation is known as the Fourier transform and it 
can be shown that (under certain conditions) the new function F(ω) (in the frequency 
domain) contains the same information as the original function f(t) (in the time 
domain). There is also an inverse operation that brings F(ω) back to f(t). It involves a 
very similar phase factor φ ‘(t; ω)= exp(-iωt). Thus Fourier transformation allows you 
to look at your data in a different way without altering the information content. 

Discrete and Fast Fourier transforms 
Mathematically the Fourier integral runs from -∞ to ∞, but data are typically more 
limited than that. If you take your data at regular time intervals (a constant sampling 
frequency) it is also possible to do a Discrete Fourier Transform, i.e. one where all 
integrals are replaced by sums:  
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and there are algorithms to do that fast. The most famous is the Cooley-Tukay 
algorithm. That is also known as the Fast Fourier Transform (FFT). The crucial thing to 
understand about the FFT is that it uses the symmetry (think of the unit circle above) 
to divide the process into two processes, one with even and one with odd terms. 
Because of this division by two, the number of points must be a power of two. If you 
do not have a factor of 512, 1024, 2048 etc. you can use zero filling to get the 
number of points you need. You just add a bunch of points to your data that are all 
zero. 



Computer lab 
The data analysis pack of Excel contains a Fast Fourier Transform option based on a 
famous algorithm, that of Cooley and Tukey. In its original form these authors 
showed that the fastest way to do a transform on a discrete data set (a Discrete 
Fourier Transform DFT) is attained if the data set contains a number of points that is 
a binary power: n= 2N.  That is n should be 2, 4, 8, 16, 32, 64, 128, 256, 512, etc. 
If the number of data points n contains factors of 3x, 5y and higher primes it was later 
shown that transformation is possible but takes more computer time. If n contains 
large prime numbers the algorithm gets pretty slow, cumbersome and complicated.  
Excel contains the original algorithm and thus requires n to be a binary power. We 
will use n=512. 
 

• Open up spreadsheet FFTlab and make sure the macros are active. Excel 
tends to deactivate them for security reasons.  

• Put a 0 in A1 and 1 in A2. Select A1:A2 and put the cursor on the bottom right 
corner of the selected range until a + appears. 

• Now drag the + sign down until you reach A512. The cells should fill with 
integers and the last one should read 511. This is your time axis (say in 
seconds). This means that your sampling rate is 1 point per second. 

• Type in cell B1:  =A1*2*PI()/512  and Enter.  
• Put the cursor on the bottom right corner of B1 until it turns into a +. Then 

double-click. This should copy and fill the formula down to B512 
• As you see from the formula the B column now runs from 0 to 2π in 512 

steps. This is handy because we are going to work with sines and cosines   
• The cell C1 is where you can experiment with functions. For the moment let’s 

just put in some normally distributed noise.  Type in C1: = 
NORMSINV(RAND()). Use the same copy and fill trick to spread the formula 
over the C range you did before for the B range. 

• Now  select B1:C512 (Activate B1, hit End; hit Down-arrow; hold down shift; 
hit Right-arrow; hit End; hit Up-arrow ) 

• Make a scatter-plot of these data with a solid line only. Should look pretty 
messy. (All you have is noise.) This is your time domain plot 

• I made a button for you. What is does is copy the formulas in the C column 
and past them as values (so that they do not get recalculated all the time and 
slow the spreadsheet to a crawl). Then it runs the Fourier Transform option 
of the Analysis Pack (You can also use that directly) 

• In I1 type =A1-1 and then double click to fill I1:I512 
• Scroll down till you see E257. As you see it is also a real value (the imaginary 

component is zero). This ‘half-way’ frequency is known as the Nyqvist 
frequency and it represents the sum of all odd points minus the sum of all 
even ones (-+-+-+-+-+ etc.) . That is: the phase angles alternate between 0 
and π from point to point.  This is actually the highest frequency your data 
provide any information on. If you want to measure something that happens 
faster you should have measured with a higher sampling frequency than 1 



point per second. In that case your data set would be larger, (say 1024 points 
if you sample twice as fast). In that case the Nyqvist frequency would be 
down at row 513 not at 257. 

• If what you study actually fluctuates at a frequency a bit faster than the 
Nyqvist frequency, say at ωNy+ δω (i.e. you did not sample fast enough) you 
will get something known as aliasing. A false signal will appear at a frequency 
ωNy- δω in your analysis. If this happens with a sound recording you get ugly 
distortions. 

•  Look at the contents of cells E256 and E258. As you can see they are each 
other’s complex conjugates. The values below the 257th row represent 
negative frequencies and do not contain any new information.  The 
symmetry around the Nyqvist frequency comes from the fact that the original 
data are real numbers. (The symmetry needs to be preserved when operating 
on the data in the frequency domain otherwise the inverse transform will not 
yield real numbers).  

• Change the value in I258 into -255 and in I259 into -254.  Then select the 
two cells and double-click the bottom right corner to fill. All the way at the 
bottom the last number should read -1. 

• Type in J1: =IMABS(E1)^2. This calculates the value of |Z|2 = Z*Z of the 
complex numbers that the FFT produced. This value is known as the power 
spectrum or the intensity of your signal. 

• Use the bottom corner trick to fill the formula down to J512. 
• Make a scatter plot of I1:J512 and make the Y-scale logarithmic (Click on one 

of the points, right click and go to the format menu). This is your frequency 
domain plot. Note that the plot looks symmetric about 0, which tells you that 
the information content in the last 256 points is the same as in the first 256. 

• The graph should look pretty random, because the transform of random is 
random again: random (white) noise contains all frequencies equally. (Think 
of white light!) 

• Let’s do something less random: Type in C1: =COS(B1*4)  and do the + trick 
to fill 

• Push the FFT button. Graph A1:E512 (i.e. select columns A and E and then 
make a scatter plot selecting the line option). 

• I recommend that you save this spreadsheet and a new spreadsheet where 
you type in the function COS(B1*4) again. The spreadsheet before you 
perform the FFT function can be called LAB4A.  Then the spreadsheet after 
you press FFT you can save the sheet as LAB4A_FFT. The reason for this 
procedure is that the FFT function replaces the C column with values and the 
original function is lost. If you do this for each function you will have a record 
of your work that you can return to. To show that you have done the 
experiment you could either submit your figures pasted into a PPT document 
or simply submit the last step in this series of functions. 



• Compare the two graphs in the time domain and in the frequency domain. As 
you see all the frequencies are zero now except harmonic number 4. (see cell 
J5, but also look at E5). 

• Do the same for =SIN(B1*4) 
• Did anything change? Not in J5, but what happened to E5? 
• The problem is that by calculating Z*Z we have thrown away the phases of 

the complex numbers in the E column (the Fourier components or 
harmonics)  and sines and cosines only differ by a phase shift of π/2= 
1.5708. We will not need phase information here, but if you want to extract it 
you can use (=IMARGUMENT(E1)). 

• We can add some random noise to the cosine function. To do this type in                       
C1: = cos(4*b1)+ 0.3*normsinv(rand()) . Fill the C column and recalculate the 
FFT. 

• As you see the data generated in the C column are a pretty noisy cosine 
wave, but the fourth harmonic still stands out nicely above an ocean of noise. 
Its intensity is still about 65000, and its phase is only a little different from 
zero. All the other harmonics have about the same intensity and their phases 
are randomly scattered between  - π and + π.  If we could throw away all 
harmonics but number four and transform back what would we get? 

• Let’s take another example. We can call this a linear combination of 
sinusoidal functions. Type in 
C1:=cos(b1)+0.8*sin(2*B1)+0.7*cos(4*b1+0.1)+0.2*sin(8*b1) and fill the C 
column. Then save as LAB4B. Then FFT and save as LAB4B_FFT. 

• As you see the ‘data’ in the C column are now a pretty complicated function 
and you would never have guessed how many components there are just by 
looking at the graph. The FFT however flawlessly picks up how many 
components there are, how strong they are and what their phases are. This is 
the main use of Fourier transforms: analyze data by frequency. This is 
particularly useful if you think of colors of light or pitches of sound. 

• Other periodic functions include the sawtooth function. 
Fourier analysis works for any periodic function. In fact, Fourier series is just a 
way to decompose any repeating function into a linear combination of sines 
and cosines.  One simple function that we can create is the sawtooth 
function. Type in C1: =A1/512 and fill the C column. The function looks like a 
straight line. However, you must remember that this is a repeating function. 
At end of the rise it returns to zero and rises again. Call this spreadsheet 
LAB4C. Study the function with FFT by clicking on the FFT button and call the 
spreadsheet LAB4C_FFT. 

• Change both the x- and y-axes of the frequency domain plot to logarithmic. 
NOTE: That plot will only show the positive values since you cannot take the 
logarithm of a negative number. Using this representation the FFT has the 
appearance of a straight line.  Using a Fourier series a saw-tooth function 
can be written as f(t)=2[ sin(t)- sin(2t)/2+ sin(3t)/3-sin(4t)/4+…..] = 
2Σ±(sin(ft)/f)  This means that the intensities I=f2 should drop off with the 



square of the frequency f.  Thus, the ln(I) = -2 ln(f), which is evident in the 
log-log plot. The slope is negative because the intensities decrease as the 
frequency increases. 

• Let’s look at a squarewave function: =IF(A1<256,1,-1) . This time the slope of 
the double logarithmic plot is -4 (the amplitudes now drop off as the square 
of the frequencies). However, because the block function is an odd function 
(antisymmetric around the midpoint) all even harmonics are empty. Thus, the 
values of the log-log plot have an oscillatory appearance. You can call this 
pair LAB4D and LAB4D_FFT. 

• You can represent a Gaussian function in Excel using C1: =NORMDIST 
(A1,244,15,0). Fill the C column. This should give a Gaussian peak around 
x=244 with a width of 2x15. As you see the FFT is also a Gaussian. Notice that 
the intensity drops to zero pretty fast at higher frequencies. You can call 
these LAB4E and LAB4E_FFT. Now you have a record of each wave form and 
the FFT. 

• Change the axes of the frequency domain plot to linear-linear if they are not 
already. Then take the FFT. The Fourier-transformed Gaussian is also a 
Gaussian, but now it is in frequency space.  This is a unique property. The 
Gaussian is the only function whose FT has the same functional form. 

• Do this again but replace the standard deviation =15 by 5. What happens in 
the frequency domain? This domain is often called reciprocal space. Why? 

• What happens if we put the peak somewhere else: =NORMDIST(A1,380,5,0)? 
• Let’s add some noise to the original Gaussian. Use C1: 

=NORMDIST(A1,244,15,0)+ 0.005*NORMSINV(RAND()) and then fill. 
• Do you still see the Gaussian in reciprocal space?  Where does the intensity 

in the low frequencies come from? The peak? The noise? Both? 
 
Some examples of FFTs: 

1. Scattering of light is essentially mother nature’s way of doing a 
Fourier transform, so all X-ray diffraction in based on it 

2. Any  regularly sampled 1D data set can be analyzed for its noise 
spectrum and operation in the frequency domain allow noise 
suppression and deconvolution (removal of peak broadening) 

3. Interferometry is based on inducing path (and thus phase) 
differences. It is used in e.g. FTIR as an alternative for a grating 
monochromator 

4.  Pulsed techniques like pulsed NMR or pulsed voltametry hit a sample 
with a block wave, i.e. a mixture of frequencies, the response of each 
of which is unraveled by FFT 

5. Mechanical spectroscopy hits samples with block function like 
deformations, again:FFT. 

6. Fourier transforms are a standard trick in solving diff-eqs. 
 

 



Appendix: Plot functions in Excel 
Changing plot limits (also called bounds) in Excel involves finding menu options 
buried under several layers of menus. The way to find these is illustrated in the 
figures shown in this Appendix. 
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