Lab 3 Computer Tutorial Quiz
Name \qquad
Answer the following questions to verify your progress.

1. What does the function $=\operatorname{IMREAL}(X)$ do?
A. It calculates the product of the imaginary and the real parts of X
B. The syntax is really $=\operatorname{IMREAL}(\mathrm{a}, \mathrm{b})$ and it produces a complex number with a as imaginary and b as real part
C. It renders the real part of the complex number X
D. It swaps the real and imaginary parts of X
2. What are the four roots of the equation $x^{4}=1$?
(Write out your answer in the space provided)
3. In step 12 you calculated the root of $x^{15}=1$. You could consider each root as a vector originating from the origin. The set of solutions then looks like the spokes of a bicycle wheel. What is the vector sum of all solutions? (Integer please)

Vector sum $=$ \qquad .
4. In last weeks computer lab we have seen the hyperbolic 'trumpets' around a calibration line. Make a sketch showing how you would determine the errors in the value of an unknown using the line with trumpets.

Excel Spreadsheet Assignment

An analyst determines the absorbance of a solution known to contain 4 organic compounds $X=A$, B, C and D at four different wavelengths $\lambda=435,472,513$ and 570 nm .
The extinction coefficients $\varepsilon_{\lambda}(\mathrm{X})$ for the 4 compounds at these 4 wavelengths are known (units lit/mol):

A	B		D	
435	325	3.5	0.1	100
472	50	200	590	0.1
513	1290	700	4.3	12
570	2	0.1	24	1350

The values she finds for the absorbance in a cuvette with $L=1 \mathrm{~cm}$ are:

435	0.070259
472	0.480401
513	0.791769
570	0.433884

What are the four concentrations?
(Hint: Absorbance $A=\varepsilon_{\lambda} L c$ is an additive quantity, so you can write out the problem as a set of linear equations. Then write this as a matrix formula and see if you can solve it by matrix algebra.

Hint: the equations have the form

$$
\begin{aligned}
& A_{1}=\varepsilon_{11} c_{1}+\varepsilon_{12} c_{2}+\varepsilon_{13} c_{3}+\varepsilon_{14} c_{4} \\
& A_{2}=\varepsilon_{21} c_{1}+\varepsilon_{22} c_{2}+\varepsilon_{23} c_{3}+\varepsilon_{24} c_{4} \\
& A_{3}=\varepsilon_{31} c_{1}+\varepsilon_{32} c_{2}+\varepsilon_{33} c_{3}+\varepsilon_{34} c_{4} \\
& A_{4}=\varepsilon_{41} c_{1}+\varepsilon_{42} c_{2}+\varepsilon_{43} c_{3}+\varepsilon_{44} c_{4}
\end{aligned}
$$

We can write these compactly in matrix form as:

$$
A=\varepsilon c
$$

Where the knowns are the vector A of absorbances and the matrix of the extinction coefficients. We can solve for the concentrations using the matrix inverse:

$$
\varepsilon^{-1} A=\varepsilon^{-1} \varepsilon c
$$

Which tells us that

$$
c=\varepsilon^{-1} A
$$

