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I Overview 
 This laboratory course in Physical and Analytical Chemistry has experimental and 
computational components. The computational components emphasize statistics, data 
analysis and methods that may be used for data processing. Many students in this 
course will have had little exposure to statistics. Students are encouraged to learn from 
the computational modules early in the course and consistently apply statistical 
methods throughout. A good foundation in statistics is extremely important for future 
work in industry or academia. Perhaps the most important aspect of the course is 
learning how to write and present scientific results. In this regard as well students are 
encouraged to start immediately to apply scientific writing skills. Self-criticism and 
criticism by others is important. It will help you to share your writing with a classmate 
and to correct or critique each other’s work. There is a great deal of team work in this 
class. You may share many things, but please do your own writing. Please make sure to 
check text for plagiarism. If you cite other work, please use quotation marks and ensure 
that the references are properly cited. If you take information from the internet, try if at 
all possible to find the original source. Do not use websites as citations unless they are 
databases (e.g. the protein data base or the NIST data base for chemical properties). 

II  Safety 
 
II.1 Equipment  
 

a) Safety Glasses. Each student will be issued a pair of safety glasses for their 
personal used. They must be worn at all times in the laboratory 

b) Fire extinguisher: Located next to the main door by the shelf of chemicals. It 
is useful for all fires except those involving alkali metals. 

c) Fire blanket. Located next door to the door connecting to Dabney 612. It is 
used where clothing is on fire. 

d) Eyewash. Located on lab bench opposite main door. It is used in case 
chemicals are splashed in the eye. 

e) First Aid Kit. Located on the shelf next to the main door. 
f) Safety Plan and Material Safety Data Sheets: Located in reagent shelf next to 

main door 
 

II.2. Evacuation 
 
When: Evacuate the laboratory on directions by either the TA or the 

instructor or when the alarm in the hall is sounding continuously. 
Where: Proceed to the right and down the west stairwell to the ground 

floor. Gather under Williams Hall for a head count. 
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II.3 Spills 
 
Strong acids or bases should be neutralized with bicarbonate solution (on side 
shelf next to first aid kit). 
Other spills should be adsorbed in paper or cloth towels that are then placed in 
plastic bags labeled with the material spilled. Notify instructor. 
 

II.4 Waste disposal  
 
a) Always label chemicals used in laboratory experiments. When chemicals are 

dispensed into a beaker or vial, you should always label it in advance to avoid 
confusion. 

b) Organic Wastes should be separated into those that contain halogenated 
compounds and those that do not (like I2 in an non-halogenated organic 
solvent) 

c) Sodium and potassium compounds and dilute acids and bases can be flushed 
down the drain. 

d) Broken glassware and disposable pipettes should be placed in the cardboard 
glass waste box. 

 
II.5 General Practices 

 
a) Unplug equipment before making connections. Have the TA check your setup 

before beginning data collection. 
b) Do not conduct unauthorized experiments. The student’s initiative is 

welcome and appreciated, but only if the TA and/or instructor are consulted 
before modifying any procedures. 

c) Use bulbs for all pipetting.  
d) Do not attempt to move gas cylinders without consulting instructor. Gas 

cylinders are quite vulnerable and dangerous, unless the regulator is taken 
off and the protective cap is put back in place. 

e) Volatile compounds must be transferred in the fume hood. Strong acids must 
be stored in the blue acid storage cabinet (under the bench by the window) 

f) Close fume hood sash when not in use. 
g) No eating or drinking in the lab. 
h) Proper clothing is required: no open shoes or bare legs. 
i)  When opening sealed glass ampoules these need to be scored properly and 

wrapped in paper towels to prevent wounds from shattered glass. 
j) Use proper (non-cloth) gloves when dispensing liquid nitrogen. Cloth gloves 

can freeze onto your skin and cause a burn if the liquid nitrogen spills on 
them. 

k) Use tongs or non-cloth thermal gloves when handling dry ice. 
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III General requirements and good practice 

 

III.1 Laboratory 
 
The experimental facilities normally used in Chemistry 452 are on the 6th floor in 
Dabney. The lab itself is Dabney 608.  The computer tutorials in Dabney 121, 613 or 
other computer facilities in Dabney Hall. 
 
III.2 Equipment and supplies 
 
Most of the common chemicals required in the student’s work are stocked in the 
laboratory. Should anything be missing, ask the TA. This also holds for ice, dry ice and 
liquid Nitrogen. 
 
 
III.3 Data recording and documentation 
 
Proper documentation is a vital part of experimentation, as the CH 452 lab will show. 
A permanently bound notebook should be reserved for the use of the course, preferably 
an official version. A carbon copy will be made of each data page and left with the TA at 
the end of each lab period. The notebook need contain only original data with 
appropriate headings as to name of experiment, data (in tabular form) and partners. A 
proper record of the filenames and contents of electronic files should also be entered if 
appropriate. Calculations, preliminary graphs and any supplemental notes may be 
included. The calendar date must be recorded in the notebook at the top of every page 
and at the beginning of each day’s entry. Please use an alphanumeric format for the 
month, 2-mar-01 or Mar-2 2001. Notation as 2/3/01 or 3/2/01 is confusing as it means 
different things in different parts of the world. 
Use a ballpoint pen or other permanent marker that provides a permanent record as 
well as a good carbon copy. Errors are crossed out with a single stroke, never erased. 
 
A (virus free) USB drive needs to be reserved for the use of the course as well. Some of 
the data are electronic and many of the calculations will require spreadsheet use.  
 
The emphasis on documentation (period) is a scientific one, but there are legal reasons 
to insist on a format with permanently bound books using permanent markers, 
signatures, dates etc. They are needed to substantiate a patent claim and many 
industries therefore impose them as a standard. Unfortunately, that can make recording 
electronic data, graphs etc. a laborious task. 
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III.4  Calculations  
 
Most of the intermediary calculations, e.g. calculating the molarity of a solution to be 
made up, require a pocket calculator. Most data work-up requires a spreadsheet and 
can be done in the computer facilities open to the students, e.g. on the 1st and 7th floor.  
 
III.5 The need for spreadsheets and Excel analysis 
 
A laptop is strongly encouraged for this lab. This is particularly useful for the second 
labs. The laptop needs to have Excel and the Data Analysis pack needs to be loaded.  A 
strong emphasis of the lab is on the elaboration of data and their interpretation and 
report writing time can be much reduced if this is done on the spot rather than 
postponed till after lab, because the teacher's help is no longer available in that case. 
 
The spreadsheet of choice for this lab is Microsoft Excel. There is a version present in 
the lab for in-lab analysis, needed for some of the experiments. A basic proficiency in 
Excel is assumed present for every student, but considerable additional use, particularly 
of the Statistics options of the spreadsheet, will be taught in the course of the lab.  
 
III.6 Tabulation 
 
An important part of the lab is to learn how to glean the essential information and 
present it as such. The use of tables is an important tool. They typically go in the Results 
section of the report. They need to be numbered, so that they can be easily referred to 
in the discussion. 
 
III.7 Graphic representation and Statistics 
 
A separate handout will be provided on the necessary statistics and error propagation 
topics that will be applied in this lab. The introduction phase will concentrate on the 
basic aspects of statistics. The rest will be taught as the need arises.  
 
Graphs can all be made using Excel, but certain errors must be avoided. 

a) Measured data points should be shown symbols only (no connecting lines) 
b) Regression lines should be line only (no symbols) in overlay with the data. 
c) Avoid color problems: some colors are lost when printing of photocopying in 

black and white. 
d) The data should fill the graph. If necessary readjust the x and y scales. (The 

origin of the graph does not need to be at (0,0). 
e) Properly label the axes with legends that indicate the units. 
f) Choose the units sensibly. Avoid marker legends like 0.000001 0.000002 etc. 

preferably by switching to a decimal prefix like m,,n, and p in the units or 
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else by multiplying by a factor 10a. This needs to be reflected in the axis 
legends 

g) The graph title is not a repeat of the axis labels, but describes the process. 
E.g. if the axis as lnV and lnP the title could be “Adiabatic compression of 
CO2.”  

h)  Be careful with font sizes. This particularly true for a presentation. When in 
doubt, try it out! Project it, go sit where the audience sits and see whether 

the result is legible or obnoxious.  

i) If you struggle with a certain effect in the spreadsheet, ask the TA, the 
instructor or your fellow students. 
 

IV Reports 
 
The advancement of science depends strongly on proper communication. This is true on 
various levels; the most obvious one is that scientific work is not ‘finished’ (and will not 
be credited!) until it is published in written form. Formal and less formal forms of 
presentation, either orally or e.g. via a poster, are also important parts of a scientist’s 
work and indeed for many non-scientists as well. 
 
All forms of reporting are preceded by an exercise in the organization of one’s 
thoughts. After all, communication is the very transfer of one’s thoughts, convictions, 
and conclusions, what have you. Such a transfer is seldom a success, if those thoughts 
do not get organized beforehand. Therefore, the emphasis on good reporting in this 
(and other labs) goes much deeper than just the reports themselves: it trains people to 
think more clearly. 
 
Although a written report and an oral one can very well cover the same subject matter, 
the two formats clearly have a different emphasis: 
  
IV.1 Final presentations 
 
An oral presentation revolves around clarity. Timing is of the essence. The audience 
should be able to immediately understand what the speaker says. The same utterance 
made a few sentences too early or too late will impair the understanding. Time is also 
short, so that completeness is impossible and proper priorities must be made. The 
audience, however, can correct the priorities by asking questions. 
 
Acquiring oral presentation skills is best done by practice. In the project phase, lecture 
time will be used by the students to give a brief oral progress report on their work in 
preparation for the final presentation. Students are required to be both speakers (on 
their A-day) and audience (on their B-day). 
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IV.2 Written reports 
 
A written report revolves around retrievability. Location is of the essence. The 
information that the reader desires must be in the right spot (proper headers) and 
presented in a suitable format (tables, graphs). Some prioritizing is unavoidable for 
reasons of size, but completeness is a goal, because the reader has no recourse if 
something vital is left out.  
 
Skillful use of the English (and Scientific) language is a great help in writing a good report 
and although personal traits and talents (and/or national origin) enter into this part of 
the equation, there are no skills without practice. Scientific writing will seldom qualify 
for a literary prize, if only because science is a global game and most global villagers 
have a different mother tongue. Nevertheless, there are important parameters like 
precision, clarity of expression, ease of reading, conciseness and correctness of rhetoric, 
grammar and spelling to consider. Impeccable logic and a willingness to step back and 
view the results through the eyes of the reader are necessary as well. These aspects can 
only be acquired by doing and comparing and being corrected. 
 
A few general remarks: 

a) The report must be an original piece of writing. All calculations including error 
estimation may be done as a team, but the report writing is individual. 

b) Assume that the reader has the level of competence of an average CH 452 
student, no more, no less. 

c) Data or other material from an outside source must be referenced in full. (This 
does not apply to well-known constants like the Boltzmann constant, etc)  

d) Overly lengthy reports are a sign of poor thought organization and will be graded 
as such. 

e) The report should be well balanced, i.e. not overly focused on a minute detail, 
while skipping other important items. (Stated otherwise: authors must develop 
their sense of priority). 

f) A scientific measurement must be reported in its complete form. In general it 
has four components: a sign, a magnitude, an uncertainty and a unit. More 
details will follow in the statistics handout. 

g) Reports are typically written in an impersonal style. Despite its stylistic 
drawbacks, the use of passive voice is encouraged. (I.e. “The data are shown..” 
rather than “I show the data..”). As scientific practice stands today, the use of 
“we” and “our” in active voice is acceptable and on the increase, but that of “I” 
and “my” is not. If necessary use “the author” instead of  “I” or pretend you are 
an anointed king and write a majestic “we”.  

 
The format of a report is very important for the sake of retrievability and reference. See 
the provided Formal Lab report rubric for the different sections of a lab report and what 
should go in each section.  
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V. Introduction to Statistics 
 
   

1. Data reduction and error types.  
2. Strategies to deal with errors. 
3. Physical measurements 
4. Distributions of replicates. 
5. Prediction limits. 
6. Estimates. 
7. The t-values and outlier rejection. 
8. Confidence limits, improving precision and the 

accumulation game. 
9. Rounding / the rule of 2 to 15. 
10. Propagation of errors. 
11. Least Squares estimation. 
12. Estimating lines instead of points. 
13. Calibration. 
14. Reading back: the inversion problem 
15. Verdicts in the court of science: type I and type I 

error 
16. Limits of detection 
17. Propagation versus confidence limits 
18. Standard addition 
19. An example multilinear regression in Excel 
20. Analysis of fits and residuals 
21. Robust regression, outlier rejection. 
22. Nonlinear regression and refinement. 
23. Some added remarks on Excel. 

 
 

Introduction. 
 

 A famous philosopher of science (K. Popper) states that what people do in 
science is to make observations. Most often they do so in a well-structured experiment. 
Subsequently they use their imagination to create a model. Then they compare the two 
and see if the model fits the observations. On this basis they make a conclusion 
regarding the validity of their model and/or their observations, which they 
communicate in report or publication. If the fit is bad, they may have to either amend or 
replace their model. Popper emphasizes that it is actually the latter falsification of the 
model that causes the steady progress in our knowledge. He also claims that the model 
always remains only a model, and never becomes the ‘Truth’. Popper would say that it is 
not possible to prove that a model is correct, only that it is incorrect. Other 
philosophers, however, that it may also be difficult to prove that a model is incorrect. 
Perhaps a better approach is to assign a probability to the model based on our 
understanding of the state of knowledge and current data. This probability is a “prior” 
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assessment of the model. After conducting experiments one can reevaluate the model 
and determine whether the measurements increased the probability of the model being 
correct. This type of approach is based on Bayesian statistics. In either case, modern 
science is based on comparisons of models to data or measured quantities. In this 
course we will focus mainly on understanding the quality of data and how to analyze 
measurements so that they may be compared with models.   
 Mathematical models have proven to be the most powerful type of models. 
There are other useful models, e.g. verbal ones, like the taxonomy of species in Biology 
or schematic ones, like the periodic table in Chemistry. While these non-mathematical 
models should not be underestimated, Physicists and Physical Chemists much prefer to 
work with mathematical models involving information of a quantitative numerical 
nature only. In fact, if possible, they try to translate other models into mathematical 
ones and find a way to make their observations numerical. The mathematical reduction 
of numerical data is therefore an essential skill in Physical Chemistry. Analytical 
Chemists are very helpful in this process because the concentrate on making sure the 
measured information is available and of high quality. In addition their work is often 
used for other purposes than the advancement of science, e.g. in forensic or medical 
science their measurement can well decide a person’s fate. 
 Unfortunately, there are some serious pitfalls in both measurement and 
subsequent data reduction, because all numerical data are subject to uncertainty and 
can be fraught with other forms of error as well. We need to learn to recognize these 
error types and how to deal with them. In fact in many cases the latter often demands 
that we anticipate possible errors in the experimental phase, if we wish to be successful 
in our efforts.  
 

1. Data reduction and error types  
 

Experimental data can be subject to a number of different types of errors.  
 
First of all there are gross errors, e.g. you type in the wrong number or you take the 
wrong sample flask etc. It can also be beyond your control, e.g. a surge in the voltage of 
the electricity you are powering your instrument with. Gross errors are typically singular 
events that can seriously upset the structure of the data. 
 
Secondly, there are systematic or determinate errors, e.g. as a result of equipment 
being misaligned or wrongly calibrated. Such effects affect all data taken during the 
experiment in a systematic way, (although not necessarily all to the same extent.) 
 
Thirdly, there are, what statisticians call random errors. Scientists often prefer to talk 
about the uncertainty of the measurement, because they cannot help making this 
‘error’.  
A balance may indicate that your sample weighs 123.4 mg in the first measurement, but 
a second (replicate) measurement may well show 123.6 mg. The differences are totally 
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unpredictable and independent, like the throw of a die or the movements of molecules 
in an ideal gas. 
 
A fourth kind of error results from incompletely randomized effects, chaos, etc. Drifting 
oven temperatures and electronic radio frequency (rf) noise are a good example. This 
type of error is neither completely systematic nor completely random. As in the 
structure of a liquid there usually is short-range order either in time or in space, but no 
long-range predictability of errors due to incomplete randomization. These types of 
interference are notoriously hard to deal with. Unfortunately, the phenomenon occurs 
frequently when mixing is not done properly, when equipment drifts, when ‘room 
temperature’ varies with the weather or the fickleness of the air conditioning system 
etc.  
 

2. Strategies to deal with errors 
 

Each error type requires its own remedial strategy, as summarized below 
 

Type of error resulting in strategies statistical  
procedures 

quality aspect 

I: Gross outliers prevention 
documentation 
rejection 

robust 
stats 

‘clean’ data 

II: systematic bias calibration N/A accurate data 
 

III: Random uncertainty 
‘white noise’ 

replication 
accumulation 

averaging 
regression 

precise and 
reproducible 
data 

IV: incompletely 
       Random 

drift, chaos 
‘rf noise’, 
inhomogeneity 

prevention, 
short duration 
mixing 

(hardly 
any..) 

‘stable’ data 

 
 

Scientific data usually contain a combination of error types. Unfortunately, the presence 
of one type of error can interfere with the remedy of the other. For example, data need 
to be stable (IV) and clean (I) before using averaging or regression techniques to deal 
with uncertainty (III). Likewise data need to be stable (IV), before robust techniques can 
be used to reject outliers (I). Such robust statistical techniques do exist, but it is always 
preferable to have valid reasons other than the data themselves to justify rejecting a 
data point. This is why good documentation of what happened during an experiment is 
a powerful weapon against outliers or gross error. 
 
Graphic representation and statistics are the only defense against random errors (type 
III). Graphics are powerful but often somewhat subjective. Statistics were specifically 
developed to deal with uncertainty in order to arrive at scientific conclusions 
objectively. This is why a scientist requires a reasonable understanding of basic 
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statistics. However, even the best statistics in the world do not compensate for a 
calibration error (type II). 
 
There are few cures for type IV errors, apart from prevention. Make sure your solutions 
are homogeneous by mixing properly before the start of an experiment. Improper 
mixing is a notorious cause of type IV error. (Remedy: try again…) 
 

3. Physical measurements 

 
There are many ways to measure something, varying from detecting light, sound, the 
force of gravity, a magnetic force etc. A device with which you measure a quantity is 
called an instrument (not a: machine) and not to get fooled by its values or destroy 
instruments you need to understand a whole bunch of things.  

3.1 Measurement variables 

 
A balance e.g. measures weight, which is the force (in N) that the earth attracts a mass. 
We can derive what the mass (in kg) is from that, but that is not the primary variable. 
This is often the case. We often measure something indirectly. Obviously, the questions 
of dimension and units are related to this issue. And yes, measurements need to be 
reported with their appropriate units. 
 
A measurement detects signal of some sort.  
 
One measurement is called a datum. It is a Latin word meaning that which is given, i.e. 
the given or gift or yield. It is a neuter word, derived from the verb dare meaning to 
give.  The plural is data. In English the singular datum is in the process of becoming 
obsolete and often replaced by data point.  

3.2 Measurement principle 

 
A balance e.g. can involve a spring, a lever or an electromagnet. In this first case you 
measure the spring’s deformation, the second the position of the lever and in the third 
you measure the electrical current needed to undo the deflection of a lever. Each 
principle leads to its own accuracy, precision but also cost.  
 

3.3 Measurement requirements 

 
How big must your sample be? How big can it be? How concentrated? How heavy? Can 
you tolerate an impurity to be there? Do you need a special sample container? Will your 
sample ruin the instrument? All these are important considerations before you do a 
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measurement. The word before is the operative one. It is your job to find these things 
out before you do harm to your sample or someone else’s instrument or both. 

3.3.1 Measurement conditions 

If an instrument works well at 25 oC in a dry environment, does it also work in a 
rainforest?  Does it work at 30 K or at 1000 oC?  Will it work an ocean going vessel?  
Does a balance work in space? Does your sample require refrigeration? 

3.4 Measurement costs 

 
Measurements are not free. People’s time and effort is one cost, but reagents and 
instrument time are also important costs. 

3.4.1 Instrumentation costs 

Instruments are hard to make and therefore costly. Students need to be taught that 
their job is to do their best on using instruments wisely, not to be afraid to use them. In 
their careers it is inevitable that they will damage something at some point. That risk 
cannot be avoided only reduced by awareness and a willingness to prepare and be 
vigilant. 

3.4.2 Consumable costs 

Lamps wear out and must be replaced, weighing paper gets disposed and must be 
bought, solutions must be made up and this costs money for the chemical and time to 
make them. Afterwards chemical must be disposed of in an environmentally acceptable 
manner.  

3.4.3 Time costs 

 
The time it takes to perform a measurement is an important consideration, as we shall 
see there are statistical reasons for that as well as practical ones. If a measurement is 
fast and automatable it is often possible to take measurements while changing 
conditions, e.g. the temperature, the wavelength, the concentration, the reaction time 
etc. This leads to the question of dimensionality 
 

3.5 Dimensionality 

  
If I weigh myself in the morning, I have a measurement of a variable: my weight W. I 
could call this a single datum. If I do it five times I have a replicate data set of five points. 
This measurement is a point measurement, i.e. it is of dimension zero (0D). However, if I 
repeat the procedure every morning for a year, I get my weight as a function of time 
W(t). The measurement is now one-dimensional (1D) as W is a function of one 
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independent variable t. W by contrast is called the dependent variable as it depends on 
time (and what I eat). 
 
Often we measure 1D data like a spectrum consisting of the absorbance as a function of 
frequency (e.g. UV/VIS) or the scattered intensity as a function of scattering angle (e.g. 
XRD) or the heat capacity as a function of temperature (DSC). 
Modern equipment easily produces multidimensional data. E.g. if we capture a series of 
X-ray diffraction images as a function of time with a CCD camera, each image has two 
independent variables, the pixel position x and y. In addition we have time. So the 
measured intensity is a 3D data set I as a function of x, y and t.  

3.6 Accuracy 

As we said measurements are often indirect. What I measure with my analytical balance 
is some electrical current (in mA) needed to keep my lever in balance. How does that 
relate to the mass (in mg) I put on my scale? We first need to establish that link by 
calibration. We first measure a couple of weights of known mass. From this we learn 
what value of the current corresponds to what mass. (Notice that this implies a unit 
conversion from milliamps to milligrams…) 
 
Of course we cannot help making some error in the calibration, because it is itself a 
measurement. This means that our measurement will always have a limit on its 
accuracy. (Need to know if that suits your purposes: is it accurate enough?). 

3.7 Linearity 

Ideally the relationship between the measured signal (say A in milliamps) and the 
meaning we give it through calibration (the quantity, say q in milligrams) should be 
linear.  
  Signal = s. quantity+ b 
  A= s.q+ b 
A small amount of non-linearity can at times be compensated for as long as the 
relationship remains at least monotonic. If the latter is not guaranteed the 
measurement is pretty useless 

3.8 Sensitivity 

The slope s in the above equation or in general the slope of the calibration curve 
s=dA/dq is known as the sensitivity of the measurement. In general a large sensitivity is 
desirable because it means that we can measure small quantities with a reasonable 
precision. Note that if the calibration line is actually a curve that the sensitivity varies 
over the range of the line. If the curve is not monotonic the sensitivity becomes zero 
and then changes sign. This is why calibrations must be monotonic. 
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Notice that the ‘biased’ curve has smaller sensitivity (it is flatter) and also that it has a 
bias b because it does not pass through the origin. I.e. even if you put no weight on the 
scale you do need to pass a current. 

3.9 Dynamic range 

Often the linearity is only guaranteed over a certain limited range of values in q. That 
means we can only use the instrument in that range. E.g. the ‘non-ideal’ line could only 
be used up to about 300 mg before we would need to correct for non-linearity. The 
‘useless’ scale could be used only below about m=50mg and even there we may have to 
correct. 
 
Every instrument has a limited dynamic range between the smallest and the largest 
quantity we can measure with it. Don’t expect to go to a weighing station for trucks and 
weigh a pea on it or even yourself. And please do not put an elephant on an analytical 
balance. The weight will not be accurate, ever again… 
 
A better way to look at this issue is to think on a double logarithmic scale.  That too 
should be linear ideally. As you see the ‘ideal’ calibration above leads to a linear 
dynamic range from 0.1 up to about 500, i.e. about three and a half decades. The red 
biased curve looks terrible but that is because in the linear plot it does not go through 
the origin. It too is linear in the range 0.1-500 but there is a constant shift b (the bias) 
that needs to be dealt with before taking logarithms. The non-ideal curve starts to 
deviate a little as of 400, but it still has a dynamic range of at least three decades. The 
‘useless’ curve is perhaps not as useless as it seems. It can still be used in the range 0.1 
to about 50, i.e. it has one decade less. 
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Each instrument has its own limited dynamic range. Elephants are beyond the range of 
an analytical balance. Peas are below the one of a weighing station. 
 
Many instruments have more than one scale that you can switch between with a 
button. Each of these scales is essentially another instrument with its own range and its 
own calibration and thus its own calibration and its own calibration errors. (This means 
it is not advisable to switch scales during an experimental run!) 

3.10 Stability 

 
Instruments tend to change over time. Calibrations have to be repeated off and on and 
changes may occur. The electrical grid is a source of much instability. Some equipment 
needs power stabilizers and/or good climate control in a room (humidity and 
temperature). All electronic equipment drifts to some extent. This is particularly 
important if the experiment takes a long time or is repeated many times for replication 
purposes. 
 

3.11 Precision 

 
This is not the same as accuracy as we have seen. It ties in with the dynamic range 
question because often the bottom of the dynamic range is an approximation of the 
random error in the measurement. E.g. if a scale of a balance goes down to 0.1 mg the 
random error in the measurement will be about 0.1-0.2 mg. This means that if you 
weigh something and it is 100mg the relative error will only be 0.1-0.2%, but if your 
weight is only 2mg the relative error will be as large as 5-10%. For many purposes the 
latter is not good enough. You need a more sensitive instrument with a more suitable 
dynamic range! 
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3.12 Destructiveness 

If I determine the amount of iron in an organic sample by burning it and determining the 
iron oxide that is formed, I have measurement but my sample is destroyed in the 
process. If I can do the same by exposing it to X-rays and measure the fluorescence of Fe 
I also get a value but my sample is intact. (Or is there radiation damage?) Every 
technique has its own degree of destructiveness and its own requirements regarding 
how big the sample needs to be.  
 

3.13 Data recording, processing, storage 

 
The frontline of science is increasingly shifting to issues related to what happens to the data 
after they have been collected, because we live in the computer age.  Many data are now stored 
electronically, but there are issues with durability of such records. Another problem is that 
instrument manufacturers will not always tell you what has already been done to the data the 
instrument provides. Some will not even allow you to access the raw data and you are forced to 
rely on the black box as given. A good scientist tries to prevent that at all cost: you remain 
responsible for the outcome! 
 

3.14 How do I find out what I need to know about an instrument  

This is no trivial task.  There a number of sources: 

 books about the method 

 people whose brain you can pick 

 instrument manuals (hard to read and often missing) 

 help files (often somewhat helpful) 

 online sources 

 publications that use the method 

 your own common sense 
 

Often people’s brains are the easiest source, if treated gently and respectfully and not too often. 
 

3.15 Resolution and broadening 

This question is particularly important for measurements of 1D (spectra) and up. If a 
spectrum contains more than one signal they often appear as two peaks. Those two 
signals can only be distinguished properly if they do not overlap too much and that 
depends on how broad the peaks are. 
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The figure shows two Gaussian peaks, one at x=300, the other at x=600 (arbitrary units). 
The width is 30, 100 and 165 respectively. In the latter case it is not even clear that 
there are two signals because the resolution of the method is not enough to distinguish 
between them. A similar problem exists in 2D data (images).  

3.16 What will the data tell me about my research topic, what do I learn from 
it? Who interprets what? 

That is a 64 million dollar question…. Analytical Chemists usually do not worry about 
that part as much as they should. (You wanted a number: here’s your number! What is 
your account number again?)  Physical Chemists (and other researchers) often do not 
worry about that as much as they should until they have made the Analytical guy waste 
his time on a hard measurement. (Why do I have to pay so much for a number that does 
not tell me anything?)  
 

This leaves managers with no scientific background to sort out the mess. (Why are you 
guys wasting the company’s money on useless measurements?) 
 
A bit of communication and preparative research will go a long way to avoid such 
situations. Another important point is that good science is typically done by comparison. 
It is often advisable to measure a blank, a known sample, something already studied etc. 
so that you can be sure what you are really after is not just a fluke. 
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4. Distributions of replicates 
 

The basic idea underlying the statistical strategy against uncertainty is: 
 

Just repeat your measurement 
 
This replication strategy is as simple as it is counterintuitive. People (especially 
managers and undergrads) tend to consider doing exactly the same thing twice as a 
total waste of time or duplication. The main message of statistics is that this is a fallacy, 
when dealing with uncertainty. Replication in fact yields useful information of two kinds: 
a better measurement value plus a value for the magnitude of the uncertainty.  
Provided the measurement procedure is repeated as exactly as possible, the latter is 
known as the pure error. It represents the reproducibility of your experiment. 
Interestingly, replication works no matter how complicated (or even arcane) the 
measurement procedure is. It can therefore be used to settle disputes about the 
appropriateness of a procedure. 
 
Even though this is not always true, replicate values are often assumed to have a normal 
distribution, although many other random distributions do exist. The normal 
distribution is also known as the Gaussian or bell curve.  The reason for its bold 
assumption is a theorem in statistics that states the following. Suppose your data are 
not normally distributed. Now take a lot of measurements and divide them in groups of 
say 5 or 6 (or any number n). Take the average over each group and collect the 
averages. The averages will typically have a distribution that looks more like a normal 
one than the original data. In other words for the number n going to infinity the 
distribution of the averages approaches normality. This is (part of) the central limit 
theorem.  
 

In experiments we often average automatically over the whole sample volume, all the 
photons in the beam etc. A lot of data will display Gaussian behavior quite naturally. 
When in doubt we therefore assume normality as a default. Actually verifying what the 
distribution of our data is takes a lot of replicates and is often not feasible time wise. 
 
The central limit theorem works for all but a few strange random distributions that do 
not have a mean. More importantly, the theorem does assume complete randomness; 
this means that data need to be stable for the theorem to work. This is a good reason 
why type IV (incomplete randomness) errors are highly undesirable and best prevented. 
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(Stir well!). Below, we will assume that our data are stable at all times.

 fig II 
 

5. Prediction limits. 
 

Looking at pure replicates is also known in statistics as point estimation. Say, we have a 
lot of time to spare and take many replicates. They will ideally follow the bell curve:  
 

𝑓(𝑥) =
1

√2𝜋𝜎
𝑒−

1
2

(
𝑥−𝜇

𝜎
)

2

 

 
The measured quantity X is known as the variable 

The parameter  is known as the mean and  as the standard deviation. . They are 

parameters The normal distribution is often written as N(,2). Figure II shows the 

function f(x) for =0 and =1 (the standard normal curve), i.e. N(0,1). 
 
The function f(x) is however not the probability itself but the probability density.  The 
probability that a data point falls between ‘a’ and ‘b’ is found by integration over this 
function: 

 

Some facts are best memorized about the standard normal curve: 
 

1) The function is symmetrical around x = , in other words there is no 
skewness. 

2) The parameters  and  determine the position and the width of the curve 
respectively. 

dxxfbXa

b

a
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3) Each point  is known as a percentile of the distribution. E.g.   =  is known 

as the 50th percentile (or median) and the inflection points = - and =+ 
are known as the 16th and the 84th percentiles, because: 

         

 

4) The inflection points x=+ and x=- (‘half width’) represent 68% limits. 

5) Ca. 95% of the probability falls between the points: +2 and -2. (More 
exactly 1.96 rather than 2). These points are known as the 95% prediction 
limits.  

6) In general a range +t to -t where t is some constant will have a certain 
probability associated with it 

 
 

Note1:  x =  represents both the mean and the median for this specific distribution. 
(This is not so for skewed distributions, e.g.). 
Note2:  The percentiles represent a one-sided way of looking at probabilities. The 
prediction limits represent a two-sided case. 
 

6. Estimates 
 

When taking a sample of data both mean and standard deviation are (and 

remain) unknown, but we can obtain estimates for  and  from the sample. This can 
be done in a variety of ways. Let us start with the safest way: robust estimation, it 
involves medians: A median is found by first sorting your data by size and taking the 
middle one (or average the two middle ones if n=even). In Excel you can use the 
function = MEDIAN(‘range’) where ‘range’ is e.g. D1:D15 containing your 15 replicates. 
 

We estimate  by sample median (med): 
 

�̂�𝑟𝑜𝑏𝑢𝑠𝑡 = 𝑚𝑒𝑑(𝑥𝑖) 
 

Note that estimates are usually denoted with a ^ caret sign.  
To calculate the sample median absolute deviation (mad) we subtract the 

estimate for  from all our data points and use the =ABS(..) function to take the absolute 
value of each of the numbers that results. This produces the absolute deviations 

||=|xi-med| from the median. Lastly take another median, this time over the || 

values. To obtain a good estimate for , we take 1.483 times the mad: 
 

�̂�𝑟𝑜𝑏𝑢𝑠𝑡 = 1.483 𝑚𝑎𝑑(|𝛿𝑖|) 

16.0)()Pr(  




dxxfX
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The factor 1.483 can be derived from the shape of the bell curve.  

The med and mad are called robust estimates, because they are largely 
insensitive even to multiple gross errors in your data. This makes them superior tools 
compared to e.g. the (older) Q-test in dealing with outliers. We will show how to do 
robust outlier rejection below. We can say that the removing the outliers “cleans” the 
data. It gets rid of some spurious points that are presumably just plain wrong for some 
reason that has to do with instrumental failure, environmental factors or operator error. 

Once the data are clean, it is safe to use the Least Squares Estimates. They take 
optimal advantage of the information contained in your data, but only work properly, if 

the data are clean. The LS Estimates are rather well known: for  is the sample average, 
defined as: 

�̂�𝑙𝑠𝑒 = �̅� =
∑ 𝑥𝑖

𝑛
 

 

The LS Estimate for  is the sample standard deviation defined as: 
 

 

�̂�𝑙𝑠𝑒 = 𝑠 = √
∑(𝑥𝑖 − �̅�)2

𝑛 − 1
= √

∑(𝛿𝑖)
2

𝑑𝑓
 

 
In Excel we can use the functions =AVERAGE([range]) and =STDEV([range]) to find the 
LSE’s. 

Note that the deviations or residuals i are once again obtained by subtracting 

the estimate for the mean  (this time the LSE) from all your data. Note also that the 
degrees of freedom (df) are n-1 in this case. This lowering of the degrees of freedom 

results from the fact that we already used up one piece of information to estimate  
from the data. 
 

7. The t-values and outlier rejection 
 

As we saw earlier, we can predict that a certain percentage of our replicates will fall in 

the zone between the prediction limits at x=+t and x=-t.  We would know that 

probability, if we knew  and , but unfortunately that is not so. All we really can do is 

work with estimates for  and . Because the limited quality of the estimates introduces 
additional uncertainty, the relationship between the value of t and the probability will 
change: the ranges must become wider to achieve the same level of certainty. If we 
work with the usual LS estimates the boundaries become  
 

�̅� − 𝑡𝑠 < 𝑥 < �̅� + 𝑡𝑠 
 



23 
 

where the value of the coefficient t now depends on the degrees of freedom as follows: 
 

Df 1 2 3 4 5 9 19 10000 
t(95%) 12.71 4.3 3.18 2.78 2.57 2.26 2.09 1.96 
t(99%) 63.66 9.92 5.84 4.6 4.03 3.25 2.86 2.58 

 

As you see, if you are interested in 95% prediction limits the t-value is only slightly 
above 2, unless you have very few replicates. The t(99%) values would give us 99% 
prediction limits. 
In Excel the function =TINV(0.01,3) will give us the t(99%) value for df=3. 

Example: 

We measure the equilibrium pressure of a compound at 250C 5 times (df=4). The sample 
average is 34.56 Pa. The sample standard deviation s=0.12. Then the 95% prediction 
limits will be  
 34.56-(2.78)(0.12) <  P  < 34.56+ (2.78)(0.12) 
  34.23          <  P  <        34.89. 
We can say with 95% certainty that a new P value will fall in this range. 
 
Of course, if our data are not clean we should not use LS estimates, but we can use the 
robust ones instead. In fact we can use robust prediction limits to reject outliers, 
because outliers do not belong to the normal distribution and will generally fall outside 
its prediction limits. To make extra sure the suspect points really do not belong to the 
normal distribution we typically take the t(99%) values (or even higher) and reject 
points, if they fall outside the range: 
 

𝑚𝑒𝑑 − 𝑡(99%)1.483𝑚𝑎𝑑 < 𝑥 < 𝑚𝑒𝑑 + 𝑡(99%)1.483𝑚𝑎𝑑 
 
A convenient way to do this is to calculate studentized deviations ti and deciding if they 
are larger than a certain critical value t(99%): 
 

 

 
We should stress that rejected points should ideally also be explainable in terms of 
extraordinary events taking place during the experiment. 
 

8. Confidence limits, improving precision and the accumulation game. 

 
Prediction limits tell us where new replicate points are likely to fall. Apart from the 
outlier issue that is not really what we are after. What we really need is a way to say 

how good our point estimate for  is. A good estimate for that is the standard error se 
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𝑠𝑒 =
𝑠

√𝑛
 

 

 
fig III 

If the data points X have a normal distribution N(,2) and we collect a great number of 

averages, e.g. over 5 points each, their distribution will have the same mean , but the 

variance is only 2/5 (see figure III). In general an average over n points is N(,2/n), so 
that se is a good estimate for the uncertainty of the average. 
 
We can define where we would expect the mean to fall by constructing confidence 
limits: 
 

�̅� − 𝑡𝑠𝑒 < 𝑥 < �̅� + 𝑡𝑠𝑒 
 
Example: 
As above, we measure the pressure 5 times (n=5). The sample average is 34.56 Pa. The 

sample standard deviation s=0.12. The standard error se =0.12/5 = 0.05    Then the 95% 
confidence limits will be  

 34.56-(2.78)(0.05) <  (P)  < 34.56+ (2.78)(0.05) 

  34.39         <  (P)  <        34.73. 

We can say with 95% certainty that the true mean  will fall in this range. If somebody 
else repeats the entire experiment, that’s where they’ll find the mean equilibrium 
pressure. 
 
Obviously, the confidence limits (for the mean) are always narrower than the prediction 
limits (for a single replicate). Let’s look at what happens if we take a lot of data, i.e. 

n: 
 

lim
𝑛→∞

�̅� = 𝜇                  lim
𝑛→∞

𝑠 = 𝜎                lim
𝑛→∞

𝑠𝑒 = 0 

 

X~ N(,2)

X5~ 

N(,2/5)

-6 -4 -2 0 2 4 6
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If the number of data n is increased the prediction limits will change around a bit, but 

gradually stabilize to   2. The confidence limits, however, will shrink to zero, because 

of the extra factor n. This is very important for science, because it provides a strategy: 
 

To reduce uncertainty, simply increase n. 
 
In other words, when fighting random errors: accumulate more replicates and average. 
This strategy is expensive, however: If we want to increase the precision by a factor of 
1000, we have to take 1,000,000 times more data. If we let a robot do that for us, e.g. a 
computer that accumulates spectra, the data will improve with the square root of 
accumulation time 
 
Warning 1: The accumulation and averaging strategy does not work, if the central limit 
does not work (unstable data (IV)) or if spikes (outliers (I)) pollute the data. 
 
Warning 2:  Prediction and confidence limits are often confused, as are s and se. 

9. Rounding / the rule of 2 to 15 
 

When you report data it is customary in the natural sciences to round them off in order 
to indicate how many significant digits a number possesses. This custom actually 
predates the emergence of statistics. Unfortunately, rounding can introduce errors of its 
own. Robust estimators for example are very sensitive to rounding errors. Rounding 
must therefore be done at the very end of your calculations. To round off properly, use 
the standard error se as follows. 
 
If the first three non-zero digits of the se are ..155.. or larger,   round se off to one digit 
If the first three non-zero digits of the se are ..154.. or smaller, round se off to two digits 
(Apart from the position of the decimal point, the result of this operation is always 
between 2 and 15, hence the rule of 2 and 15.) 
Lastly, round off the mean value such that it ends in the same digit as the se. 
 
An example: suppose you find an average value of 238.38746 with a standard error of 
1.37673 
The result is reported as: 238.4 (1.4)  and has 4 significant digits. 
 
Suppose you find an average value of 238.38746 with a standard error of 0.037673 
The result is reported as: 238.39 (0.04)  and has 5 significant digits. 
 
It is customary to use scientific notation in multiples of 1000 (103, 106 etc), if possible 

incorporated into the units e.g. mM, M, kJ, m, nm etc. 
 
 E.g. 2,340,498,372  se : 449,302 becomes  2340.5 (0.4) 106  
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The factor n in the formula for se implies that inappropriately rounding off one digit to 
the left obliterates 99% of your information. One digit to the right and you claim to have 
done 100 times more work than you actually did. 

Warning1: A ‘’ notation like 238.41.4 usually refers to 95% confidence limits, not 
standard errors. This is not the same. In fact, it makes a difference of a factor of at least 
2, because of the t-distribution values involved. 
 
Warning2: Admittedly, the fact that this lab opts for the above procedure represents a 
somewhat arbitrary choice. Statisticians might even object that rounding is superfluous 
(and potentially harmful) once the standard error is known. For scientists, however, the 
important thing is that they do need to develop a discriminating eye for which digits are 
significant and which are not. Rounding is an excellent way to do just that. 
 

10. Propagation of errors. 
 

If we calculate a quantity Q from a number of measured values (A, B, C,.. ) each with 

their respective uncertainties ((A), (B), (C),.. ) we can calculate how the 
uncertainties propagate into the value of Q as follows  
If 

𝑄 = 𝑓(𝑥, 𝑦, 𝑧) 
then 

𝜎2(𝑄) ≅ (
𝜕𝑓

𝜕𝑥
)

2

𝜎2(𝑥) + (
𝜕𝑓

𝜕𝑦
)

2

𝜎2(𝑦) + (
𝜕𝑓

𝜕𝑧
)

2

𝜎2(𝑧) 

 
Please note that we take derivatives versus ‘x, y, z etc’ here.  Each of the sigmas is 
defined as 

𝜎(𝑥) = √∑
(𝑥𝑖 − �̅�)2

𝑁 − 1

𝑁

𝑖=1

 

 
The derivatives will be evaluated at the average  
 

(
𝜕𝑓

𝜕𝑥
)

𝑥=�̅�
 

 

This formula is an approximation that only holds true if the error sources (z),(y),(z), 
.. are independent (i.e. uncorrelated). If x and y represent e.g. the intercept and slope 
from the same regression this is generally not true. In addition we tacitly assume that 

we can replace the ’s by their estimates (i.e. se’s) 
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If the function f(x,y,z,..) is of a relatively simple form, it can easily be shown (Try it!) that 
the formula reduces as follows. 
Case 1: constant factors 

𝑄 = 𝑐𝑥 
 

𝜎(𝑄) = 𝑐𝜎(𝑥) 
The error in the function Q is a factor of c larger than the error in x. 
 
Case 2: Addition and subtraction 
 

𝑄 = 𝑥 + 𝑦     𝑜𝑟 𝑥 − 𝑦 
 

𝜎2(𝑄) = 𝜎2(𝑥) + 𝜎2(𝑦) 
 

The quadratic nature of this addition is more ‘forgiving’ than a simple addition of ’s 

would be. For example if (x)=(y)= 1 we get 

  2(Q)= 12   +    12  = 2, so that (Q)=2 = 1.4145 (not: 2.) 
It also means that there is usually only one dominating error source: 

  2(Q)= (100)2  + (20)2 + (10)2 + (2)2 + (1)2 

  2(Q)= 10505 

(Q) 102 
The first error term is really the only one that matters. 
Note also that it makes no difference whether x and y are added or subtracted. This is 
no longer true, however, if the errors are correlated. Then we get: 
 

2(Q)= 2(x)+2(y)  2covar(x,y)  
 
The covariance term does depend on addition or subtraction. (In regressions, the 
covariance can be calculated from the off-diagonal elements of the same (X’X)-1 matrix 
that the standard errors are obtained from (see below), but unfortunately regression 
software seldom will actually display them. 
 
Case 3: Multiplication and division: 
 

𝑄 = 𝑥𝑦      𝑜𝑟        𝑄 =
𝑥

𝑦
 

   
Here we add the relative errors quadratically: 
 

𝜎2(𝑄)

𝑄2
=

𝜎2(𝑥)

𝑥2
+

𝜎2(𝑦)

𝑦2
 

 
We can think of these in terms of the relative error, which is the important quantity in 
most reporting. 
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𝜎(𝑄)

𝑄
= √

𝜎2(𝑥)

𝑥2
+

𝜎2(𝑦)

𝑦2
 

The relative error in Q is the geometric mean of the relative error of x and y, which are 
its two variables. 
 
Case 4. For other functions we may have to do a bit of algebra to find the appropriate 
formula. For example if Q = f(x) = xn.   

𝜕𝑓

𝜕𝑥
= 𝑛𝑥𝑛−1 

 
𝜎2(𝑄) = (𝑛𝑥𝑛−1)2𝜎2(𝑥) 

 

𝜎(𝑄) =
𝜎(𝑥)𝑛𝑥𝑛

𝑥
 

So the relative error is: 
𝜎(𝑄)

𝑄
= 𝑛

𝜎(𝑥)

𝑥
 

 
In the above formulae when x and y appear one would use the best fit parameter in a 
non-linear fit of the average for each of these values in the derivative.  
 
Propagation versus replication 
 

With all the assumptions, it can be difficult to determine (Q) by propagation of errors, 
e.g. if we cannot estimate all of the error sources or it is not clear how they are 
correlated. Sometimes there may also be unknown (hidden) error contributions. In such 
cases it is better to go back to the basic strategy: pure replication. Simply repeat the 
entire procedure that leads to the determination of Q and average. The standard error 
will reveal the sum total of all error sources in its full ugliness. Sometimes both 
approaches can be used in comparison in order to identify hidden error sources. 
 

11. Least Squares estimation. 

 
We said that the average is the “Least Squares” estimate for a point, without explaining 
what that means. The term ‘Least Squares’ refers to a very general estimation principle, 
useful for much more than point estimation. This is the general idea: 
 
Let us start with a large set of  (normal) replicate values xi and make some wild guess for 

the mean  of the distribution, say: a. We can now compute the deviations i = xi –a. 
Some of these may be positive, some negative and that is not useful for our purposes. 
Instead we take the squares and add them up: This produces the sum of squares  
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𝑆𝑆 = ∑ 𝛿𝑖
2

𝑖

= ∑(𝑥𝑖 − 𝑎)2

𝑖

 

 
Obviously SS is a function of our guess a. If we are far off the mark, SS will be large, 
regardless of the direction of our blunder. A good guess on the other hand will result in 
a small SS value. Thus, the (‘loss’) function SS provides us with a way to optimize our 
guess. We look for that a value that produces the smallest ‘loss’. This amin value is called 
the least squares estimate. (LSE). We can easily find the LSE value for a by putting the 
derivative d(SS)/da =0 
 
We find: 

𝑑𝑆𝑆

𝑑𝑎
=

𝑑 ∑ (𝑥𝑖 − 𝑎)2
𝑖

𝑑𝑎
= −2 ∑(𝑥𝑖 − 𝑎)

𝑖

= 0 

− ∑ 𝑥𝑖

𝑖

+ ∑ 𝑎

𝑖

= 0 

∑ 𝑥𝑖

𝑖

= 𝑛𝑎 

 

𝑎𝐿𝑆𝐸 = �̅� =
∑ 𝑥𝑖𝑖

𝑛
 

 
In other words, the sample average indeed minimizes the sum of squares. The median 
by contrast does not have this nice property.  
 
Notice also that the sample standard deviation s and the sample variance s2 are 
computed from the minimal value of the sum squares and are LSE’s therefore:  

 

 
where df refers to the number of degrees of freedom. 

 

 

stdev
df

SS
s

df

SS
s





min

min2 var
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12. Estimating lines instead of points 

 
So far we did point estimation, on pure replicates i.e. the model we used to try and fit 
our data was that of a simple constant: 
 
Model  : measurement  = constant + random error 
 

   xi  = a  + i 

 

We typically assume that  has a normal distribution N(0,). We now extend the least 
squares principle to more complicated models, e.g. a straight line fit through our data: 
 

   yi = a + bxi  + i  
 
Note that our data are no longer (just) pure replicates, because we vary the value of x, 
but we can play the same game as before.  We take some wild guess at slope b and 
intercept a, calculate deviations and SS. To minimize SS we must now take two 
derivatives (dSS/da and dSS/db) and put them zero simultaneously. Try it on a rainy 
Sunday if you like, but the math gets pretty messy. Luckily, matrix notation is a great 
help when dealing with this kind of problem. We can write the above model as: 
 

(

𝑦1

𝑦2. .
𝑦𝑛

) = (

1 𝑥1

1 𝑥2. . . .
1 𝑥𝑛

) (
𝑎
𝑏

) + (

𝜀1

𝜀2. .
𝜀𝑛

) 

 
Or: 

𝒚 = 𝒂 + 𝒙 ∙ 𝒃 + 𝜺 
          
The X matrix records for what values of x we choose to take a measurement, e.g. the 
temperature values we set our thermostat to. We generally assume that there is no 
error in these set points or independent variables. Y contains the dependent variable, 
the measured values of e.g. the absorption at the chosen temperatures. 

The matrix  contains the random errors that we assume to be normal (N(0,
2)) 

The matrix  contains the parameters we wish to estimate, the slope b and intercept a 
of our line.  
 

Finding the LSE for  can be done quite elegantly in matrix notation. It takes a page of 
ugly math, but it can be shown that putting the derivatives of SS equal zero results in 

the same formula as above minus the  term.: 
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𝒀 = 𝑿 ∙ 𝜷 

     

 Notice that the only unknowns left are in . The X and Y matrices are known because 

they are either set or measured. Solving for  now requires some simple matrix algebra: 
 

𝑿𝑻𝒀 = 𝑿𝑻𝑿 ∙ 𝜷 
 

(𝑿𝑻𝑿)−𝟏𝑿𝑻𝒀 = 𝜷𝑳𝑺𝑬 
 
Interestingly, the latter (regression) formula minimizes the sum of squares for a great 
many different models: point, line, circle, parabola of polynomial. It is one of the most 
powerful equations in statistics. Let’s first look at a simple straight line.  
 To construct the X matrix we take the derivative with respect to x of both of the 
variables in the equation for a line.   
 

𝒚 =
𝝏

𝝏𝒂
𝒂 +

𝝏

𝝏𝒃
𝒙 ∙ 𝒃 

 
 
The LINEST function 
 
The easiest way of doing regressions in EXCEL: using the LINEST function. For a simple 
straight line you make a column of independent variables (X-range), e.g. the 
concentrations you made up and a column of your measured dependent variables (Y-
range). Then you select a range of 5x2 cells and type: =LINEST(Y-range,X-range,1,1). 
 
LINEST is an array function. Such functions need to be activated using Ctrl+Shift+Enter. 
 
Excel gives you the following numbers 
 

slope intercept 
se of slope(n) se of intercept 
R2 RMSE 
F* df 
SS(reg)* SS(resid)* 

 

1. Your slope and intercept appear on the first row.  
2. Their se (not: std. dev!) values on the second row are the ones to be used to 

round off the parameter values on the first row.  

3. The value of the Root Mean Square Error represents the estimate for  , the 

quality of a single data point.(Remember: The matrix  is supposed contains the 

random errors that we assume to be normal (N(0,
2)).  
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4. R2 is a number between 0 and 1 that measures how closely your model 
correlates with your data. 

5. The value of df (the degrees of freedom) will equal n-2, because you have 
determined two pieces of information out of n data points 

6. *The statistics F,SS(reg) and SS(resid) will not be used in this lab 
 
If you apply regression to a model with more than one independent variable, you need 
to select more columns and you get something like 

slope(n) slope(n-1) …. slope(2) slope(1) intercept 
se of slope(n) se of slope(n-1) …. se of slope(2) se of slope(1) se of intercept 
R2 

RMSE 
    

F df     
SS(reg) SS(resid)     

 

Notice that the parameters run from right to left! 
 
The limitations / assumptions of the regression formula are: 

1) The model must always be written as Y=f(X,) + , i.e. the dependent variable on 
the left, the independents and parameters on the right 

2) The independent variables in X (set points) are assumed error free. In practice, 
any error in them will end up in the dependent variable Y. 

3) The inverse (X’X)-1 must exist, i.e. the determinant det(X’X) cannot be zero. 
4) The data must be clean. (Remember: LSE is not robust) 
5) The degrees of freedom must be one or more (#data > #parameters+1). 

6) The errors  are normally distributed as N(0, 
2) 

7) The size of the random error  () is the same for all data. (The errors are 
homoscedastic) 

8) The model function f(X,) must be linear in the parameters a,b,c (in ) 
 

The dangers of regression 

 

It is important that all these requirements are fulfilled, because if they are not the 
numbers you get from, say the LINEST table cannot be trusted. This is why we will learn 
a number of checks that you must perform to be sure that you have applied regression 
safely later. Without these checks regression is dangerous, hence: 
 
 There are lies, damned lies and statistics!! 
 
Let’s first look at an important application of statistics and assume all requirements are 
met. 
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13. Calibration 

 
Calibration is the principle method in eliminating systematic errors, or at least trying to 
do so. The principle is quite simple. If you are not sure whether your measurement 
produces an accurate measurement, you can check that by making a measurement on a 
sample for which the outcome is well known. Such a sample is called a calibration 
standard. 
 
Balances e.g. are usually calibrated by putting certified weights of known value, 1 g, 10 g 
100 g, 1 kg on them and comparing the response R of the instrument to the value V it 
should be. 
 
Regression plays an important role in calibration procedures. Ideally, the instrumental 
response R should be a linear function of the variable V that is to be measured: 
 

𝑹 = 𝒃 + 𝒔 ∙ 𝑽 + 𝜺 
 
Non-linear responses can at times not be avoided, but there are a number of rather 
unpleasant side effects associated with non-linearity. 
 
The two parameters s and b of a calibration line have names. The slope s is known as the 
sensitivity of the measurement and the intercept term is known as the bias, although 
this term is also used in a more general sense for any systematic (as opposed to 
random) effect that afflicts your outcome.  To obtain high quality data the sensitivity 
should be large compared to both the random error and any residual bias remaining 
after calibration.  
 
To obtain a calibrated value for an unknown sample, we follow the following procedure: 
 
1. We measure a set of Rcal values for a number of standards with known values Vcal 
2. We construct a regression line, i.e. determine the best s and b values. 
3. We measure a Runknown for the unknown sample 
4. We calculate Vunk = (Runk- b)/s 
 
Of course the calibrated value Vunk is subject to error. In fact its value is subject to two 
kinds of error: 
 

1. The random error due to the measurement: unk/s 
2. Whatever residual systematic calibration error is left despite our calibration 
 
We should note immediately that the first is a random error and can therefore be 
reduced by replication of the measurement of the unknown. 
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The second however will remain the same as long as we do not do a better calibration 
job, which means that it presents a systematic bias in the value of Vunk. This means we 
better do a good job on calibration; otherwise all subsequent measurements will be 
junk.  
The calibration error can result from error either in the sensitivity s or the bias b. The 
latter does not depend on the value of V, the former does. In fact it equals zero in the 
center of gravity of the calibration data and diverges as a cone from there. 
 
The calibration error can statistically be represented by drawing the 95% confidence 
limits around the calibration line. These limits form the two branches of a hyperbolic 
function. The total error (calibration + random measurement of the unknown) are given 
by the prediction limits. They also form a -somewhat wider- set of hyperbolic branches. 
The two sets of hyperbolas are given by: 

𝑌𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = 𝑠𝑋 + 𝑏 ± 𝑡 𝑅𝑀𝑆𝐸 √
1

𝑁
+

𝑁(𝑋 − �̅�)2

𝑁 ∑ 𝑋2 − (∑ 𝑋)2
 

 

𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑠𝑋 + 𝑏 ± 𝑡 𝑅𝑀𝑆𝐸 √
1

𝑛
+

1

𝑁
+

𝑁(𝑋 − �̅�)2

𝑁 ∑ 𝑋2 − (∑ 𝑋)2
 

 

𝐷 = 𝑁 ∑ 𝑋2 − (∑ 𝑋)2 

 
The quantity D is actually the determinant of the (XTX) matrix. 
The value of N represents the number of calibration standards used. The value of t(p,df) 
represents the appropriate t-value at the given number of degrees of freedom (N-2) and 
the confidence level desired (usually 95% of p=0.05). The standard values are denoted 
by X. The center of the calibration set is given by the average of all X values. This 
represents the narrowest point where the error in the slope does not contribute. 
If we take n replicate measurements of the unknown, the (outer) hyperbola becomes 
gradually narrower, eventually converging to the (inner) confidence limit as the 1/n 
term goes to zero. The inner limits represent the error due to calibration and can only 
be improved by doing a better calibration job. It is useful to note a few things  

 If we continue to use the same calibration the calibration error is a systematic one 
(bias). The calibration error only becomes a random one if we apply many different 
calibrations. 

 Subject to one particular calibration the slope error induces a positive bias on one 
side of the center, a negative one on the other side.  

 The calibration line is best used around its center, because far outside this range the 
(systematic!) slope error starts to dominate. Extrapolations are not attractive.  
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14. Reading back: the inversion problem 

 
As we saw above we obtained a calibrated value for the unknown by taking the inverse 
function of the calibration line using the best estimates for s and b: 
 

𝑅𝑐𝑎𝑙 = 𝑠 ∙ 𝑉𝑐𝑎𝑙 + 𝑏 + 𝜀 
 

𝑉𝑢𝑛𝑘 =
𝑅𝑚𝑒𝑎𝑠 − 𝑏

𝑠
+ 𝜀𝑟𝑎𝑛𝑑𝑜𝑚 + 𝜀𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 

 
Graphically we can represent that as 'reading back' a value on the Y-axis (the measured 
R values) towards the X-axis (representing the calibrated V-values). Let us assume that 
the random error in each individual measurement is the same for all measurements 
(calibration and unknown alike). We can predict with say 95% confidence that a 
subsequent experiment of an unknown substance must fall within the outer hyperbolas. 
Since we know the response R (on the Y-axis) we can use the corresponding V values on 
the X-axis as confidence limits for our unknown V value.  
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(If the vertical R value is marginal, the calibrated value obtained in the read back 
process is at the limit of detection because its confidence limits now include the value 
V=0.) 
 
 
 
To obtain the complete error in the calibrated values we should therefore take the 
inverse of the hyperbolic prediction limits. Unfortunately, the analytical inverse of that 
function is too unwieldy to be of practical use. Also when we 'read back' the values on 
the upper and lower 95% prediction limits we get an asymmetric set of limits around our 
calibrated value. This even means that strictly speaking a calibrated Vunk value does not 
have a normal error distribution even if the measured Rmeas does. This effect is generally 
ignored in science. Provided the error in the calibration slope is small and the calibration 
is used not too far from the center of the calibration data this is not too serious a 
problem. That does impose two requirements on calibration lines: 
 

 The calibrated range should be larger than the range in which the calibration is used 

 The calibration should be tight and linear (a high R-value is required with many nines 
like 0.9999998. R= 0.998 could well represent a bad calibration) 

 We need to assume that the random error in the calibration experiment and the 
measurement of the unknown is identical 

 Of course: all the assumptions and requirement of regression statistics must be met. 
(examine your residuals!!) 

Unknown R

Calibrated
value V

95% 

confidence

LOD

The outer prediction limits (‘trumpets’) around the  calibration line fix the 
LOD and the confidence limits of the calibrated value V

Marginal
unknown R



37 
 

 
 Under these conditions we can approximate the inverse of the hyperbolic functions 
with a symmetrical function: 
 

𝑠�̂� ≈
𝑅𝑀𝑆𝐸

|𝑠𝑙𝑜𝑝𝑒|
∗ √1 +

𝑛. 𝑉2

𝐷
+

∑(𝑥𝑖
2)

𝐷
−

2𝑉 ∑ 𝑥𝑖

𝐷
 

 
 

 Once again D represents the determinant of the (XTX) matrix as above. For a 
simple straight line that is equal n.Σxi

2-(Σxi)2.  

 The number of calibration samples is given as n,  

 The xi values are the independently chosen values, e.g. of the concentrations of 
the standards.  

 V is the calibrated value of the unknown sample obtained by the read back 
process as shown above.  

 
We are assuming there is only one such measurement available. If the unknown is 
measured k times and the average value used read back, the 1 in the formula is replaced 
by 1/k: 
 

𝑠�̂� ≈
𝑅𝑀𝑆𝐸

|𝑠𝑙𝑜𝑝𝑒|
∗ √

1

𝑘
+

𝑛. 𝑉2

𝐷
+

∑(𝑥𝑖
2)

𝐷
−

2𝑉 ∑ 𝑥𝑖

𝐷
 

 
 
Depending on its chosen level, the confidence limits should be calculated by multiplying 
with the appropriate t-value. Typically you take the t(df, 0.95) value for that. The 
degrees of freedom would be n-2 for a simple straight line. 
 

15. Verdicts in the court of science: type I and type II error. 

 
Scientific data are sometimes used to decide matters of life and death. Forensic science 
is a good example of that. The reason that confidence limits are so important is closely 
related to what happens in a court of law, where every verdict can be in error in two 
rather opposite ways: 

 
 declared guilty declared not-guilty 

murderer OK type II error 

no murderer type I error OK 

 
Obviously it is OK to declare a murderer 'guilty' and someone who has done no wrong 
'not -guilty', so the two possibilities on the diagonal of our table are not a problem. If 
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the quality of the evidence is not so good however, the off-diagonal situations become 
more likely and no they are not the identical. 

 When we commit a type II error we let a murderer loose on society to inflict 
more harm.  

 When we commit a type I error we send an innocent man to death row and let 
the true murderer run free. 

  
Obviously, neither is desirable but because our evidence is never 100% clear, we are 
confronted with an unpleasant choice. The pickier we are about the evidence the less 
likely we send an innocent man to his death, but the more likely we release a murderer. 
We must decide what is worse. Usually people decide to err on the side of caution: the 
judicial system is based on the premise that we would release a murderer in case of 
reasonable doubt or lack of evidence.  
 
In science we basically make the same kind of choice. When we speak of a 95% 
confidence limit, we say that we are 95% confident that we are not committing a type I 

error () and we say nothing about the type II error rate (). If we want to be pickier we 
can resort to the 99% confidence limits to further reduce our chances of committing a 
type I error. However, this increases the likelihood of committing a type II error, unless 
we improve the quality of our data. The latter is the only way to reduce the probability 
of error regardless of type. After the fact of measurement, all we can do is trade off and 
by being pickier we increase type II error  
 
Warning 
There is a lot of confusion on this point. People even advocate taking a 6-sigma (very 
picky) threshold to reduce both error types. This is really a fallacy of logic. 
 

16. Limits of detection 

 
This discussion brings us to a vital question in all Analytical chemistry, the limit of 
detection. It pertains to the question whether we can or cannot demonstrate the 
presence of a certain effect.  
 

X=0 relative to. 95% limits inside  Outside 

means: no effect demonstrated effect demonstrated 

 
No effect demonstrated can mean two things: 
1. There is no effect 
2. There is an effect, but the measurement is not good enough to demonstrate it. 
 

The probability that #2 occurs is . It depends on the quality of the data 
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Effect demonstrated means just that.  
 

The probability that we falsely make this claim is   0.05, depending on how far 
outside the confidence limits zero is.  
 
A special point on the calibration graph is therefore the intersection of the upper 
hyperbola (of the prediction limits) with the Y-axis. It is known as the limit of detection 
(LOD). When we do a measurement of an unknown that produces a response right at 
this value and we use the calibration graph to read back we get a lower confidence limit 
for our Vunk value that is precisely zero. This means we must let the accused off the hook 
because our numbers tell us that it is quite possible that we did not measure anything. 
Then again: it could also be so that the V value is actually larger than zero and the man 
is a crook. The only way to reduce this type II error is to get better data. Maybe a 
replicate measurement under the same calibration will do the trick, but we might 
actually have to improve on our calibration line, particularly if we are far away from the 
center of the calibration design and the standard error of the slope is not so good. 

17. Propagation of errors versus confidence limits  

 
The propagation of errors as we have introduced it above cuts quite a few corners. One 
is that it completely ignores the effects of the degrees of freedom on the resulting 
confidence limits. For the proper reporting of analytical data this may not be sufficient, 
because legislation related to quality control (ISO, GLP etc.) often requires that they be 
reported to terms of confidence limits, not in terms of an estimated standard error. If 
the number of points n in the sample is large this roughly means that we are pickier by a 
factor of two (1.96 actually) but as sample sizes are often not large enough the 
difference gets more extreme. 
 

Confidence limits are usually written using the symbol . If we have a simple large set of 
replicate values and we are using 95% confidence limits the following two notations are 
equivalent, because for n is large the t-value for 95% confidence is about 2: 
 

 120(3) corresponds 120  6 at 95% confidence. 
 
In the more common case that we have a sample of -say- four replicate values and that 
we are taking a simple average, the degrees of freedom df=3 and the t value is a little 
over 3. In that case: 
 

 120(3) corresponds 120  9 at 95% confidence. 
 
Of course we do assume that our replicates are normally distributed, so that we can use 
a t-distribution to link the variance (as estimated by standard error) to the confidence 
limits. 
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Unfortunately, error propagation that takes into account degrees of freedom quickly 

becomes pretty complicated. Often we need to determine the difference  between 
two rather small sets of replicates. If the data quality is equal (same variance) for the 
two sets, we can pool the residuals (or: variances), i.e. subtract the respective average 
from each point 
 

𝜎𝑝𝑜𝑜𝑙𝑒𝑑 = √
∑ (𝑥𝑖 − 𝑥1̅̅̅) +𝑠𝑒𝑡 1 ∑ (𝑥𝑖 − 𝑥2̅̅ ̅)𝑠𝑒𝑡 2

𝑛1 + 𝑛2 − 2
= √

𝜎1
2(𝑛1 − 1) + 𝜎2

2(𝑛2 − 1)

𝑑𝑓
 

 
We can compute the resulting confidence level from: 

𝑡𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 =
𝑥1̅̅̅ − 𝑥2̅̅ ̅

𝜎𝑝𝑜𝑜𝑙𝑒𝑑
√

𝑛1𝑛2

𝑛1 + 𝑛2
 

 
If the variances are not equal, e.g. because the data were taken on two different 
instruments by different people, things get already quite a bit more complicated: 
 
 

𝑡𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 =
𝑥1̅̅̅ − 𝑥2̅̅ ̅

√
𝜎1

2

𝑛1
+

𝜎2
2

𝑛2

 

 
The effective number of degrees of freedom is: 

𝑑𝑓 =
(

𝜎1
2

𝑛1
+

𝜎2
2

𝑛2
)

2

(
𝜎1

2

𝑛1
)

2

𝑛1 + 1 +
(

𝜎2
2

𝑛2
)

2

𝑛2 + 1

− 2 

 
It will be clear that is errors are to be propagated from more complicated functionality 
than a simple subtraction it becomes impossible to keep track of the degrees of 
freedom and all we can do is calculate an approximate standard error, use the 2/15 
method and forget about trying to convert that into ‘exact’ 95% confidence limits… 
 

18. Standard addition 
 
There is an interesting combination of measurement and calibration into one and the 
same procedure that involves regression. It is called standard addition. Often unknown 
samples contain many compounds besides the one that is being analyzed (the analyte A) 
and this can affect the sensitivity of its measurement. These are called matrix effects. A 
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good example is a fluorescence measurement, where part of the emitted light is partly 
absorbed by some other molecule present in the matrix. 
 
One way to circumvent this problem is to add known quantities of A to the unknown 
sample (this is called 'spiking') and measure a number of spiked samples. We then plot 
the measured response against the added concentration of A. A regression line is 
constructed which will intersect the X-axis at a negative value -x. This point represents a 
hypothetical sample with [A]=0, so that x represents the actual concentration in the 
original mixture. The slope equals the sensitivity of the measurement under the 
conditions of the sample itself.  We do need to assume that the matrix effects affect only 
the sensitivity, i.e. the slope and not the intercept. If the matrix contributes to the 
response the method does not work. 

 
 
 
 
As the figure shows standard addition is an extrapolation method. It easily loses 
precision if the unknown concentration is large compared to the additions. The 
confidence limits of the measurement can be found from the intersection of the 
confidence (not: prediction!) limits of the regression line with the X-axis. 
 
A standard addition line is essentially a calibration line in the matrix. We must arbitrarily 
set the value x of the unknown equal to zero.  As shown in the figure as long as the 
spiked values have a greater x value (and therefore a greater y value) they will make a 
calibration line. When you extrapolate that line back to the negative x axis you have 
determined the difference between the unknown concentration and zero. Therefore, 
the concentration is equal –x (which is positive since x is negative). Note that the slope 
of the line is equal to: 

𝑠𝑙𝑜𝑝𝑒 =
𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

−𝑥
=

𝑟𝑖𝑠𝑒

𝑟𝑢𝑛
 

Therefore,  

𝑥 =
𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

−𝑠𝑙𝑜𝑝𝑒
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To find the approximate confidence levels we can use a similar formula as above, but 
the first term under the root symbol is missing, because we are dealing with the ‘inner 
trumpets’: 

 

𝑠�̂� ≈
𝑅𝑀𝑆𝐸

|𝑠𝑙𝑜𝑝𝑒|
∗ √

𝑛. 𝑋2

𝐷
+

∑(𝑥𝑖
2)

𝐷
−

2𝑋 ∑ 𝑥𝑖

𝐷
 

 

What LINEST does not give you 

 
Linest is wonderful to quickly to a regression but it does not give you any graphical 
output and that makes its application a little dangerous, because we have no check on 
the validity of our regression assumptions. 
 

19. An example of multilinear regression in Excel. 

Any model that is linear in the parameters (a, b, c, d,..) is a linear model. 
 That implies that quadratic or polynomial models like 

 Y= a + b.x +b.x2   +  

 Y= a + b.x +b.x2 + c.x3 + d.x4 +  
are in fact linear models. 
 
We can even go to more than one independent variable (multivariate models): 

 Y= a + b.x1 + c.x2   +  
This is still a linear model, because we do not have anything like a2 or a/b in the model. 
 

Suppose we wish to fit our data to the following model: 

 Y= a + b.x + c.x2 + d.ln(x) +  
This model is linear, because it is linear in the parameters a,b,c,d. The fact that it 
contains x2 and ln(x) is irrelevant, because the x values are known. 
 
The data look like this: 

X  =X^2 =ln(X) 
Y values 
measured 

0.1 0.01 -2.30259 1.04 

0.4 0.16 -0.91629 1.44 

0.5 0.25 -0.69315 1.46 

0.8 0.64 -0.22314 1.59 

1 1 0 1.53 

1.2 1.44 0.182322 1.51 

1.8 3.24 0.587787 1.45 

2.1 4.41 0.741937 1.36 

3.2 10.24 1.163151 1.16 

3.5 12.25 1.252763 1.15 
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4 16 1.386294 1.04 

4.1 16.81 1.410987 1.04 

4.8 23.04 1.568616 0.9 

5 25 1.609438 0.9 

6 36 1.791759 0.81 

7.3 53.29 1.987874 0.72 

8.9 79.21 2.186051 0.81 

10.2 104.04 2.322388 0.96 

 

The 2nd and 3rd columns were calculated from the first.  The 4th column represents the 
measurements (Y). Note that the first 3 columns represent the matrix X, except for a 
column of ones (for the intercept) that Excel adds automatically. 
 
Go to Tools/data analysis and look for Regression on the pop-up menu. (If data analysis 
is not on the Tools menu, invoke add ins first and request the analysis pack) 
In the Regression pop-up menu I specified D2:D19 as my dependent Y variables and 
A2:C19 (i.e. the first 3 columns) as independent ones. I checked the confidence level 
option and filled in 99% (I like to be picky). I told Excel where to put the output and 
opted for Residuals and Residual Plots. They are quite useful as shown below. This 
produces a lot of output. We will only explain the most important items. Look at the 1st 
table: 

SUMMARY OUTPUT 

  

Regression Statistics 

Multiple R 0.997393 

R Square 0.994794 

Adjusted R Square 0.993678 

Standard Error (RMSE)  0.022767 

Observations 18 

The Standard “Error” (of the Estimate) is a somewhat confusing name Excel uses for: 
 

 

 
It is better known as the RMSE (root mean square error). It represents the spread of the 

data around the line (, the ‘noise level’), comparable to what the standard deviation 
does for point estimation. In regression you can skip tedious replication and still get a 
RMSE, but only if the model is correct. You don’t always know that. This is a 
fundamental difference with point estimation. There you do pure replication and so you 
know that the (point) model is correct. It should be noted that df=18-4=14 in our 
example, because we estimate 4 parameters a,b,c and d. Please not that for regression 

to work df has to remain  1. 
 

The R (correlation) statistics give you an overall idea of how well the model fits the data. 
R2 is between zero (no correlation) and one (perfect correlation). R can in principle be 

RMSE
df

SSR

df

SS
s  min
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between –1 and +1, because in general correlation can be negative. In regressions it is 
positive, because it describes how well the Yi values correlate with the predicted ones Ŷi  
(=a+b.xi+c.xi

2+d.ln(xi)). The disadvantages of R are that  
 

 it tends to give numbers quite close to one even for mediocre fits. It is like a 
purity value: a metal that is 99.9% pure is not very pure: 99.9999% is much 
better.  

 It is only useful if compared to another R value 

 R also has a severely non-normal distribution. Therefore Fisher proposed a 
better measure: 

 

Fisher’s z runs from 0 to infinity, as R runs from zero to one. It also has a normal 
distribution, in good approximation. For quality control comparisons it is a better tool 
than R.  Warning: in Excel you can put a trend line in a graph which shows R, but not the 
much more important indicators like standard errors of the parameters.  
 
We’ll skip the second table that deals with ANOVA (Analysis of variance). It tells us how the sum 
of squares is explained by the various terms in the model. 
 
 The 3rd table is the most interesting for our purposes: 

  Coefficients 
Standard 

Error t Stat P-value Lower 95% Upper 95% 
Lower 
99.0% 

Upper 
99.0% 

Intercept 2.012576 0.020535 98.00724 2.9E-21 1.968533 2.056619 1.951446 2.073705 

X Variable 1 -0.50492 0.01396 -36.1696 3.14E-15 -0.53487 -0.47498 -0.54648 -0.46337 

X Variable 2 0.030357 0.000998 30.40967 3.46E-14 0.028216 0.032498 0.027385 0.033329 

X Variable 3 0.402964 0.014554 27.68834 1.26E-13 0.37175 0.434179 0.359641 0.446288 

 

20. Analysis of fits and residuals 

In order to establish that the model is not grossly wrong and gives us lies, damned lies 
and statistics we need to analyze the outcome of our calculation. There are two 
graphical ways to that:  

a) Look at the fit. 
b) Look at the residuals. 

The ‘coefficients’ in the table above are the estimated values for the parameters a, b, c, 
d. They tell me that the best fit to my data is given by:    Ŷ=2.01 –0.505.x +0.304.x2 
+0.403.ln(x) 
I could use this formula to calculate the best fit and produce a line-fit plot  like this 
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The rest of the 3rd table tells me how good (or bad) my estimates are.  Column 3 gives 
the standard errors of the four parameters. They are calculated from the diagonal 
elements of the (X’X)-1 matrix and the RMSE. They are the equivalents of the standard 
error se in point estimation, and are to be used for the application of the rule of 2 and 15.  
They too dwindle when you add data to your set, although in a more complicated way 
that depends on where you pick your points (i.e. on X). 
 
However, before you report anything, you should also look at the 95% confidence limits. 
Make sure that the value of zero is not included in the confidence limits of any of your 
parameters. If it is, it means that your data do not contain sufficient information to 
estimate that particular parameter and so your model is wrong (and so are all the 
numbers you obtain from it). You should try again by removing the ‘dead’ parameter 
from your model. (Alternatively, check that the P-values are smaller than 0.05 for all 
parameters). 
 
The parameter values and their standard errors are only safe to report if you are sure 
you used the right model. There are number of ways to check that, the simplest one is 

to calculate the residuals i  by subtracting the fit from the data and have good look at 
them. 
 

Ideally, the ’s should just represent the pure error , i.e. they should look like random 
noise only. 
The plot below is typically what you want: no pattern at all 
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But sometimes you might have an outlier: 

 
 
 

You must remove the outlier and redo the fit! Regressions tend to give complete 
nonsense, if you leave in an outlier. (See topic 13 below).  
 
A wrong model might produce residuals like this: 
 

This 1 outlier prevents the 
proper fit of all these data 
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There is a clear pattern here. You probably omitted a term in your model. 
Note the different scales in the 3 above graphs: I used simulated data with the same 

random error  for all of them. (I shifted the decimal point in one point to create the 
outlier and left out the logarithmic term to create a wrong model.) 
 
As the Standard ‘Error’ of the Estimate value in the 1st table is computed from the 

residuals, its value only reflects the true random ‘pure’ error pure, if there are no other 
error sources (left) in your data (see 1st plot). This means that if your model has lack of 

fit (as in plot 2 and 3, note the scale), the ’s will be much bigger than ‘pure’ random 

error pure.(see plot 1). The values of se for the parameters a,b,c,d will be inflated 
accordingly. In principle the inflated size of the Standard ‘Error’ is a sure sign there is 

something wrong and comparing it to the pure random error pure should tell you so. 

Unfortunately you don’t know its value unless you determine pure independently:  Go 
back to the basic strategy and take pure replicates (more than one y value without 
varying the value of x) and take a local (average and) standard deviation. 
 
Lastly, heteroscedastic residuals could look like this: 
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The data quality gets worse for higher x. 
   
Reporting regression results 
 
After you have convinced yourself that there is nothing untoward with your regression 
results you can summarize the first two columns of table 3 in a table in the results 
section of your report. The above data would give: 
 

Parameter Value 

a 2.01(2) 

b -0.505(14) 

c 3036(10) 10-5 

d 0.4039(15) 

 

21. Robust regression, outlier rejection 
 

Unfortunately regressions can be affected by one or more outliers quite seriously. Even 
the residuals do not always identify the culprit(s). Although the residuals do not look 
random in the presence of an outlier, the outlier is not necessarily the biggest residual. 

 
Linear Regressions are Least Squares (LS)  estimates. Even more than the sample 

average and the sample standard deviation, they are very sensitive to gross errors. The 
regression line may pass through the outliers rather than the ‘good’ points and the 
RMSE is usually grossly inflated, so it cannot be used to studentize residuals. Rousseeuw 
has proposed a solution to this problem. In Least Squares we minimize the Sum of 

Squares 2. That is the same thing as minimizing the average square deviation 2/n 
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Instead we could minimize the median square deviation med(2). Unfortunately there is 
no simple analytical way to do that, but we can use an algorithm: 

 Take two points from your data and define a straight line through them 

 Take the residuals  from this line and calculate med(2) 

 Do this for all possible (or a sufficient number of) lines 

 Take the line with the lowest med(2): the Least Median Square (LMS) 
line 

 Use the med(2) of the LMS line to estimate  (RMedSE instead of RMSE) 

 Studentize the residuals of the LMS line with the RMedSE 

 Remove all points for which the studentized residual /RMedSE is too 
large 

 Do a Least Square regression on what is left 
This whole procedure is known as Reweighted Least Square regression (RLS).  
 

The robust version of RMSE is obtained from: RMedSe = 1.483.(1+ 5/n).med(2) 
Uncertainties in the parameters are not calculated for the LMS line, but that is not a 
problem, because in the end we revert back to a regular regression on the clean data, 
which does give us that information (the RLS output).  
 

The Excel macro 
 

A spreadsheet containing an Excel macro that performs the LMS/RLS procedure can be 
found on the CD. It suffices that this file is open together with the spreadsheet you are 
working on. Go to View/ Toolbars and make sure that the Visual Basic toolbar is visible. 
Select a suitable range with data, click on the blue arrow on the Visual Basic toolbar, 
select the RLSmacro and run it. Suitable ranges are either a single column with 
replicates (1D), two neighboring columns with X and Y values (2D), or three columns 
with X1,X2 and Y values (3D)(In this case X2 can also be X2).   
The macro will ask you for a confidence level, 99% or higher is recommended. It will ask 
you whether to include or exclude an intercept in the 2D and 3D models and it will 
suggest a number of lines to try. For very large data sets you can lower this number if 
the macro takes too long. 
The macro will generate a new sheet every time you run it. Both the LMS output (in 
blue) and the RLS output (in yellow) can be found in it. The latter is in LINEST format in 
the 2D and 3D case and can be used as the final result. The rejected points are shown in 
red. Two plots are generated: a line fit plot with both the LMS and the RLS fit and a plot 
of the LMS-residuals (studentized using RMedSE)  and the RLS residuals (studentized 
using the RRMSE the Reweighted root mean square error as it comes out of the RLS 
LINEST results) 
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Warning: If your data do not fit for other reasons than outliers, e.g. there is a term 
missing in the model and you run it through the macro, it may well decide to throw 
away a lot of perfectly fine data points as ‘outliers’ to get rid of the lack of fit.  
 

22. Nonlinear regression and refinement 

 

The regression formula  = (X’X)-1X’Y can also be applied to find LS estimates for the 

parameters in  if the model is not linear in these parameters. An example: 
 

 

This model has two independent variables (X1 and X2), but more importantly it has two 

parameters (a and b). It is not possible to write the model as Y=X. +  in this case but 
we can fill a J matrix with the derivatives of the model versus the parameters, taken in 
each data point: 

 

 

The derivatives can e.g. be calculated from :  The quantity X2(1) is 

simply the first value we have chosen for variable X2.  For ‘a’ and ‘b’ however, we need to 
first make an initial guess. Then, if we calculate (J’J)-1J’Y we get a better set of 
parameters with a lower sum of squares after regression SSR. If we repeat the process 
(iterate) the outcome usually converges, i.e. applying the formula will not produce much 
change in the parameters any more. 
There is a problem though: the SSR is like a landscape with many valleys and ridges. If 
we start with wrong initial values, we may end up in a valley that is not the true 
minimum of the landscape. It is also possible that the matrix inversion may not work if 
the derivatives in J are ill defined. 
 
In Excel itself non-linear regression is not possible, but the CD used to install the 
software contains a number of add-ins. One of these is the Solver. It can be used to do 
non-linear regressions. Unfortunately it does not produce standard errors of the 
optimized parameters, but the CD-ROM in the back of the Excel for Chemists book 
contains a macro (under Chapter 12) that remedies that problem. The macro estimates 
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the derivatives in J by changing each parameter pi a little bit to pi + and calculating 

[Y(p1,p2,…pi+,…,pn)- Y(p1,p2,…pi,…,pn)]/ in each data point. As long as <<p this finite 
difference is a good estimate for the derivatives needed. 
 

23. Some added remarks on Excel 
 

We should be grateful that Excel makes a lot of useful graphical and statistical 
procedures readily accessible to us in the lab. It certainly is a useful educational tool for 
data exploration and reduction. It should be noted, however, that statisticians have 
found some serious flaws in the program. The matrix inversion routine used to calculate 
(X’X)-1  tends to produce nonsense if the determinant of this matrix is close to zero and 
does so without warning. This may happen if two variables are strongly correlated or 
more than one of them is ‘dead’. Another problem is the use of data with very large 
number of significant digits; this can lead to round off errors in standard deviations etc. 
For serious publication work it is recommended to use better software. 
 
The Regression tool under data analysis actually makes use of the same =LINEST array 
function, so that the results are identical. The tool has the advantage that it easily 
produces residual plots. The LINEST function on the other hand is ‘alive’.  
 

24. References 
 
Although its description of regression is somewhat sparse, a useful book on the use of the 
statistical functions of Excel, is: 
 
Beverly J Dretzke; Kenneth A. Heilman; Statistics with Microsoft ® Excel, Prentice Hall, Upper 
Saddle River, NJ 07458, 1998. 
 
A more general description of Excel that includes a chapter on regression as well as on the use 
of array functions, macro’s etc., is: 
 
E. Joseph Billo; Excel for Chemists, Wiley-VCH, New York, 2001 
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 Appendix I 

 

 
The deviations  from the median should ideally have a normal distribution around =0. 

The absolute deviations || will therefore have a half-normal distribution 
 h(x) where h(x)=0 for x<0 and h(x)=2.f(x) for x>0.   
The median (i.e. 50th percentile) of this half normal distribution has the same x value as 

the 75th percentile of the normal distribution, i.e. that x= value for which  

 

This point  lies at +/1.483, somewhat below the point = + (the 84th percentile). 
 

Appendix II 
 

Other distributions 

 

The normal distribution is but one of many different kinds of random distributions, 
some of which do occur in nature. A good example is the exponential distribution. In 
contrast to the normal distribution it does not have a square in the exponent. The 
Boltzmann distribution is an example of such a distribution. Another example is the 
uniform distribution. Its graphical representation resembles a rectangle rather than a 
bell curve. Rounding errors have such a distribution and most computer-generated 
random numbers do. The =RAND( ) function in Excel e.g. is uniform. To get a normally 
distributed number use =NORMSINV(RAND( )).) Lastly, events that have a rare 
occurrence, e.g. radioactive pulses in a Geiger counter, usually have a Poisson 
distribution. (This is just a small sample). 

75.0)()Pr(  


dxxfX
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. 

Tutorial I: Rounding and significance. 

 Rule of 2-and-15. 

 

A. The rule of 2 and 15: 

 

1. Compute the average and its standard error se = s/n 
2. Look at the first three non-zero digits of the standard error: 00xyz... 

3. If xyz  155 round off to obtain one digit, else to obtain two digits 
4. The resulting digits should always be between 2 and 15 
5. Make sure that the average is rounded off, such that it ends in the same digit 
6. Put the one or two digits of the standard error in (brackets) behind the average. 

 
Problems: Round off the following numbers in accordance with the rule of 2/15 

Note: the standard error se is computed from the standard deviation s as: se = s/n 
 

1. You compute an average of  X= 15.837465  with a standard error of se= 0.14398.  
2. You compute an average of  X= 15.837465  with a standard error of se= 1.59398.  
3. You compute an average of  X= 158.37465  with a standard error of se= 15.9398.  
4. You compute an average of  X= 158.374  with a standard deviation of s= 1.29398; 

you have n=100 data points. 
5. You compute an average of  X= 158.374  with a standard deviation of s= 1.59398; 

you have n=10000 data points. 
6. Is the end result better for 4) or for 5)? 

 

B. Significant digits.  

 
A number that is properly rounded as 213.6(3) is said to have four significant digits. In 
fact the major purpose of rounding is to determine which digits are significant or not. 
Suppose the original number was 213.592347. The last digit (7) is entirely a matter of 
chance: a new measurement could produce any of 10 possible values. The first digit 
however (2) will not change in the next experiment. Therefore the digits 213.6. are said 
to be significant, and the digits ...92347 insignificant. In science we want to base our 
conclusion on significant data. That is why this difference is very important. 
 

7. In each of the problems 1-6 indicate how many significant figures there are. 
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C. Relative errors 

 
A relative error is the error expressed as a fraction (or percentage) of the averaged 
value. 
For example, a number like 213.6(3) has a relative error of 0.3/213.6 = 0.0014 or 0.14%.  

8. In each of the problems 1-6 calculate the relative error 
9. What relation is there between significance and relative error? 
10.  Consider the following 2 data sets. Determine the average, the standard 

deviation and the standard error. Report the average in 2/15 format. Report the 
number of significant digits and the relative error. 

Data A 4.38 4.81 5.28 5.27 5.75 5.51 6.5 6.33 

Data B 15.9 16.89 16.73 14 15.54 14.34 13.92 14.02 

D. Differences and propagation. 

 
To make a cogent scientific argument we often have to demonstrate that two values we 
have measured are really different, i.e. they should differ significantly. 
 

 That means that we need to know what the error is in = A-B, given se(A) and se(B). 
We can estimate that using variances. (i.e. the square of se): 
 

 [se()]2  =  [se(A)]2 + [se(B)]2 
 
This is called error propagation. We are cutting a few corners: 

 we assume that the error  = se (We neglect degree of freedom issues) 

 we assume that the data for A and B are independent (no correlation) 
 

11. Using the values of problem 10 calculate your best estimate for  by subtracting 
the averages for A and B. 

12. Estimate se() using the above equation  

13. Estimate se() by simply adding the standard errors. 

14. Report the value for , (properly rounded) and calculate the relative errors with 

both estimates for se(). 
15. What is more forgiving, the linear addition or the quadratic one? 

 

For a quantity  = A +B the propagation goes along the same lines. 
 

16. Suppose D = 0.121(12) and E= - 0.129(14) . Is the sum  = D + E significant? 
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E. Products and ratios 

 
For products (P = A*B) and ratios (R=A/B) we have to work with the squares of the 
relative error. 

[se(P)/P]2  =  [se(A)/A]2 + [se(B)/B]2 

17. Report the properly rounded values of P and R based on the data of problem 10 
 

F. Other functions 

 
For any other function F = f(A,B,....) we must add weighted variances. The weight 

factors can be approximated by taking the derivatives [f/A], [f/B] etc. 
 

 [se(F)]2  = |F/A|2 [se(A)]2 +|F/B|2 [se(B)]2 + ..... 
 

18. Report the value of 1/A and 1/B (see 10). 
19. Assuming that the values in problem 10 are angles in degrees, report the value 

of Z= sin(A)/sin(B) 
 

The equations for ,,P and Q can all be derived from the general equation for F. 
20. Derive the equation for the product P 
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Laboratory Experiments  

 

In this phase students will do an experiment in the 608 lab one afternoon and a 
computer tutorial on the other. The experiments will be done in pairs or groups of three 
and the next time the student comes to 608 he/she will put a report on last period’s 
experiment in the report tray. 
 
Which experiments the student will do will be determined in lab by means of a rotation 
scheme.   
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Practice. Balances and calibration of volumetric tools 
 
Balances are a very basic and very valuable tool in any chemistry lab and any chemist 
must understand their use, their proper treatment, their strengths and their 
vulnerabilities. 
 

Dynamic ranges 

 
 The precision of a modern balance can be quite astounding, but their dynamic range 
(the ratio between the smallest and largest weight they can handle) is limited. This is 
why they come in different ranges. Some measure in tons, others in kg, yet others in 
grams, in mg or even in micrograms. In the lab we generally use two kinds of 
instruments:  

 gram range (ca. 1000g down to ca .01 gram) 

 milligram range (ca. 50g down to ca 0.1 mg) 
 
The graph shows the dynamic ranges of the balances in Dabney 608 on a logarithmic 
scale in grams. It is up to you to choose the appropriate device for your measurement. 
Ideally your weight should be in the middle of the dynamic range 

 

 
 
If a mass of 1 gram is weighed on a balance that goes down to .01 grams the relative 
error = .01/1 = 1% 
If the same mass is weighed on a balance going down to .1 mg the relative error is 
.0001/1 = 0.01% 
At the top of the dynamic range the precision gets even better, but then the accuracy is 
often no longer guaranteed. 
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Vulnerabilities 

 
1. Air flow can affect measurements in the mg range 
2. Buoyancy can affect measurements in the sub-mg range 
3. Vibrations can affect measurements in the mg range 
4. If the balance is not properly leveled this can affect the weight. 
5. Suddenly dropping a heavy object of severe overloads can destroy the balance 
6. uneven spread of the weight may lead to erroneous values 
7. Leaving spilled chemicals on the balance corrodes it (at all weight ranges). CLEAN 

THEM UP!!!! 
8. To avoid corrosion, always use paper / aluminum / ceramic /glass containers or 

weighing boats. 
9. Hygroscopic materials gain weight if left open. Either weigh quickly or weigh 

them in a flask you can close off 
 

Introduction 

Balances need calibration with standard weights, but once calibrated, they are used to 
calibrate other equipment. The purpose of this lab is (1) to calibrate two volumetric 
tools (a pipette, and an automatic pipette) and (2) to determine the density of a liquid 
using a burette. Ethanol or other liquids will be provided by your TA. 
  
You will then use the Reweighted Least Squares technique (1D) to reject any outliers 
and calculate the average and RMSE of the volume delivered by the automatic pipette 
(micropipette) and the burette, respectively.   
 
You will also use the Reweighted Least Squares technique (2D) to reject any outliers and 
calculate the density of the liquid from the burette measurements. 
 
The dimension of measurement of the pipettes and graduated cylinder is volume rather 
than mass. This is why we need to know the density to be able to convert between the 
two: 

mass [g] =  volume [ml] * density [g/ml] 
 

The density of a liquid depends a little on temperature. Therefore, before the 
measurement use a thermometer to measure the temperature of the liquid you are 
using and look up the density at that temperature. Compare the density determined 
from the burette measurements to the literature density of the liquid under the same 
temperature condition. 

Experiment. 
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Caution: If you spill anything: clean up immediately, just use Kim wipes. Please do not 
ruin balances by leaving them dirty or wet! Don’t push hard on a balance. 
 
The basic procedure is essentially the same for the three volumetric instruments. Make 
sure you first properly rinse the volumetric tool with DI water then condition it with the 
liquid. There is DI a tap in the corner of Dabney 608 by the white board. 
 
Write down all information about your volumetric tool: what volume can it measure? 
Do you know the tolerance (uncertainty)?  
 
Select a suitable balance. Which one is suitable depends on the quantities you are about 
to work with, so you need to compare the weight you expect to get with the dynamic 
range of the balance. Take as sensitive a balance as you can afford under the 
circumstances. Use an appropriately sized beaker as the receptacle for weighing. 
 
The measurement should be done using ten aliquots should be dispensed from your 
device consecutively.  
 
There are few different strategies to weigh a sample: 

1. You can either let the liquid accumulate in your weighing pan and tare each time 
you wish to dispense more 

2. You can discard the liquid each time and then tare. 
3. You can let the weight accumulate and not tare at all (keeping careful records of 

the values at each accumulation) 
 
The last measurement may result in having to deal with greater quantities. (Is your 
balance capable of dealing with that?) 
Make sure you write down the weight of the dispensed aliquot (or the total weight in 
strategy 3) in your lab notebook.  
 
For the automatic pipette (micropipette) 
Set the variable volume pipette to each volumetric value and write down which value 
you are measuring. For the calibration step, use strategy 2. above to record at least 5 
different readings of the mass of the liquid delivered by your selected pipet at each 
volume. For the measurement of the density measure each of ten volumes ranging from 
0.1 to 2.0 mL. Measure each volume and mass in triplicate. 
 
For the burette: 
The burette will only be used for the density measurement using strategy 1. above. Fill 
your burette and record the initial volume (if you do not start at exactly zero, you will 
have to subtract this initial reading from all the subsequent readings). Using weighing 
strategy 3. above, tare a clean dry receiver flask and deliver approximately 1 ml aliquots 
(record the exact volume- bottom of the meniscus) and record the mass on the 
analytical balance after each delivery. Do not tare between measurements 
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Data work-up 

Put your data in a spreadsheet. Make sure to convert the liquid masses to volumes with 
the right density for the pipettes.  If you did accumulation compute the difference 
between a weight and the previous to determine the weight of each aliquot. 
 

Determine the Relative and Systematic Error of the Micropipette 

 
Use the Reweighted Least Squares technique to reject any outliers and calculate the 
average volume of the pipette and its uncertainty. This is like a calibration step, except 
that you may use a single volume, e.g. 1 mL for the large micropipette or 200 uL for the 
smaller variant and weigh a given volume of DI water at least three times. Based on the 
95% confidence limit, what is the relative error? Relative error refers to the ratio of the 
95% confidence limit to the nominal value used and may be converted to percent. 
 
Also determine the systematic error of the pipette (the nominal value written on it 
minus your final average). Is this bias significant? Is there a tolerance given on the 
pipette? Is the bias within that tolerance?  
 
Pipettes are often used in the first step of a dilution. Suppose you would use your 
pipette to dilute an aliquot of a 0.10000 molar solution to a volume of 1 liter in a 
volumetric flask. Calculate the final concentration of that solution and its precision (2/15 
please) assuming that the molarity 0.10000 and final volume of 1000 ml are exact (error 
free). What is the relative error in the concentration? 

Determine the Density of a Liquid Using the Micropipette and Burette 

 
Graph ten measured weights against ten different volume values ranging from 0.1 to 2.0 
mL that you read off from 1.) the micropipette and 2.) the burette. Do a regression (RLS 
if necessary). The slope value should equal the density of the liquid at your temperature. 
Use the trumpets Excel spreadsheet to calculate the slope, RMSE and 95% confidence 
limit for a line of regression. A. Is the difference in the measured and tabulated values of 
the density within precision? B. What is the RMSE of the slope of the line of regression? 
C. What is the t-value? D. Using the graphical method draw a horizontal line at a mass of 
1 gram and determine the 95% confidence limit. 

General questions 

The accumulation method and the taring method each have advantages and 
disadvantages. The taring method limits the total weight, and that can be an advantage. 
It also has a drawback. Which one? 
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Laboratory Report 

This laboratory is an exercise in measurement and calibration. Find articles in the 
Journal of Chemical Education or journals in Statistics, Physics or other quantitative 
sciences that describe methods for calibration and error determination. Write the paper 
as a general introduction to these methods using the categories in the rubric, Abstract, 
Introduction, Experimental, Results and Discussion. Discuss relative errors in 
measurement of density based on your data and any articles. Also, consider the errors in 
measurements of pH, heats of combustion, concentration (based on absorbance for 
example) or any other commonly measured quantity. Is there a consensus about how 
large a relative error is commonly observed or is acceptable for a scientific 
measurement? 
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Lab 1. Adiabatic and reversible compression of a gas  
 
This laboratory requires a laboratory report.  

Introduction 

 
An adiabatic change is a change for which heat is prevented to exchange with 

the surroundings. This can be accomplished by insulating the system so that it cannot 
exchange heat with the surroundings. However, another way to accomplish an adiabatic 
change is to drive the process so quickly that there is no time for heat exchange. 
Sometimes, we therefore think of a sudden process as an adiabatic process. This is, in 
fact, the procedure we will use in this experiment. 
 
A reversible change is a change that follows path consisting of states of rest. The idea 
that a process is a reversible is an idealization. In practice, a real process may be far 
from reversible. Clearly when a process is driven very quickly it is not likely to be 
reversible. Nonetheless, the model we will use assumes a reversible process. We will see 
how good that assumption is using the data in this experiment. 
 
The initial and final states of an adiabatic and reversible volume change of an ideal gas 
can be determined by the First Law of Thermodynamics and this will be discussed 
extensively in CH433.  The resulting equation for such a change relates volume and 
pressure: 
 

𝑃𝑖𝑉𝑖
𝛾

= 𝑃𝑓𝑉𝑓
𝛾

                                                              (1) 

Where the exponent: 

𝛾 =
𝐶𝑝̅̅̅̅

𝐶𝑣̅̅ ̅
                                                                   (2) 

 
That means that γ is the ratio of the heat capacities at constant pressure and constant 
volume.  You should review the derivation of this experiment starting from the first law 

of thermodynamics, U = q + w with the condition q = 0. In addition, for an ideal gas 
there is an expression 

𝐶𝑝
̅̅ ̅ = 𝐶𝑣

̅̅ ̅ + 𝑅                                                           (3) 

 
From Eqns. (2) and (3), the molar heat capacity 𝐶�̅� can be determined from a 

measurement of .  
 
Heat capacity is related to the number of accessible degrees of freedom system, such as 
rotations, vibrations and translations, because if the system has more degrees available 
we must spend more heat to make it go up one degree. 
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 Monatomic gases like Argon have only translational degrees of freedom. 

Statistical thermodynamics shows that = 3/2R for such a gas 

 Diatomic gases have 2 degenerate rotational degrees and one vibrational one. 
The latter is not active at room temperature, but the rotational ones add a term 

R to the . 

 Triatomic molecules have an even greater heat capacity that is also somewhat 
temperature dependent 

 
All gases in this experiment are sufficiently dilute that we can consider them ideal 

EXPERIMENT 

 
The Pasco TD 8565 Adiabatic Gas Law Apparatus allows the rapid and simultaneous 
measurement of P, V and T for a gas sample confined in the cylinder of the apparatus. 
Two hundred data points can be stored on a computer for a compression lasting 200 
milliseconds, fast enough to assume that the process is adiabatic, but slow enough that 
we can assume that the conditions are uniform throughout the gas sample, i.e. that the 
compression is also reversible. 
 
It is advisable to first do a dummy run using whatever gas happens to be in the cylinder 
(air probably) to familiarize yourself with the PASCO TD 8565 

 
Make sure the cylinder device is powered 

 Start DataStudio 

 Create experiment: the interface should be visible and active. 

  On the picture of the interface on the “experiment setup” window there are 

three smaller yellow rings on the right 

 Click on the left most of the 3 smaller rings 

 Scroll pop up to bottom and opt for “voltage sensor” 

 Click on the middle one 

 Opt for “pressure sensor (absolute)” 

 On the experiment setup window set the sample frequency to 500 Hz 

NOTE: We will not use the temperature sensor 

Calibration run 

 

 On the left bottom window “Displays” click on graphs and make a graph for the 

voltage and one for the pressure. 

 Open one of the gas taps and push the piston all the way down 

 Click “start” on the computer panel 

vC

vC
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 Read off the position of the bottom of the piston on the centimeter scale on the 

cylinder. Bring the piston up stepwise 1 cm at the time. Write down how far the 

bottom of the piston is each time. The voltage curve should look like a stair case. 

 Under file go to export data and export the voltage staircase to a suitable 

location and filename (create a directory for yourself). 

 The exported files can be opened in excel. 

 

 

Measurement run 

 

 Click “sampling options” and then “delayed start”  opt for data measurement = 

voltage and set the value to 4V. This means you will have to lift the boom of the 

instrument to the top to trigger a measurement 

 Make sure your cylinder is filled with the right gas with both taps closed 

 Have one partner at the cylinder, have the other click Start on the left top of the 

main panel 

 Lift the boom to the top and quickly press it down. Let the other partner press 

stop 

 Go to file (top left) and export the three data sets to disc. Make a separate 

directory for your data and decide upon sensible file names like argon-p1, e.g. 

 The files can be opened in excel. They are tab delimited and you need to the 

combine the v,p and t files for the same experiment into one sheet. 

 
 Data collection 
 
We will examine 3 gases: Ar, N2 and CO2. Use the valves to flush the cylinder five times 
with each gas. It is useful to have two people operate them (Open exit valve, move 
piston down, close exit valve, open entry valve to fill with gas, close entry valve, open 
exit valve, etc.) Close both valves at the end, but briefly open the exit valve to make sure 
the pressure in the cylinder with the piston up is equal to ambient. Make sure the piston 
is up, such that it is beyond the reset sensor point, otherwise the data collection is not 
triggered. 
 
Once you have flushed the cylinder with the gas of interest it takes little time to make a 
measurement. Therefore, collect data for at least 10 consecutive runs. Make sure to 
compress the cylinder as quickly as possible. If you compress too slowly there will be 
heat transfer and the measurement will not be accurate.  
 
Repeat the procedure for the other gases. 
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Calculations and Reporting 

 
The data consist of spikes of pressure vs. volume (measured as voltage) that are 
digitized as the lever is pulled down to compress the gas. For regression purposes derive 

a suitable formula involving lnP versus lnV by taking a logarithm of Eq 1.( 
introduction). (What is the relationship between the slope of an lnP versus lnV plot to 

?)  
 
The data files can be opened directly into Excel. The “text import wizard” menu will 
popup, select ‘Next’ and in the second popup tick the ‘comma option’, then select 
‘Finish’. 
 

The report need not contain all raw data in hard copy. Just list the file names ( Data).  

Calibration data 

The output voltage from the sliding resistor on the side of the cylinder is a linear 
measure for the volume, but zero voltage does not correspond to zero volume. Take an 
average of the measured voltage for each plateau of the staircase and plot the height 
position against the voltage and determine the best regression line.  Assume that the 
diameter of the cylinder is 4.45 cm to convert the height to volume. 

Measurement runs 

For each of the data sets do the following: 
 
First you need to determine what the valid P and V data are. There are a lot of bad data 
at the beginning of the set and the point the piston hit bottom marks the end of the 
valid data. First inspect a plot of V against time. Use the intercept and the slope of the 
calibration line to convert the voltage to volume.  (Include one such graph in Data 
section).  If downward part of the spike does not look linear, then you have not pulled 
down the lever quickly enough.  Note the kink in the graph; this roughly marks the end 
of the valid data. Put the cursor on the kink in the graph to find out up to which point 

the data is valid  Data). 
  
Method for fitting the data: Fit the ln V vs ln P data and determine the slopes and 

standard deviations for each data set using linear least squares fitting. As above use the 

central region of the change in V and P for your linear fit. Once you have made the fits 

for calibration line and data sets use the t-test to determine what value to multiply 

calculate a 95% confidence limit for your data. Determine the heat capacity based with 

appropriate errors based on the slope and the known relationships between the 
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parameters. Be sure to account for propagation of error. (see below for the math to 

complete this). 

 

Use propagation of error to determine appropriate error estimates.  Consider the fact 

that your calibration line for the volume contains a measurement error that is 

significantly larger than the pressure since you must convert from voltage (measured) to 

volume. 

 
Complete the report as follows: Derive an expression that allows you to express the 

molar heat capacity at constant pressure 𝐶�̅� in  and R (from Eqn 2 and 3). 

(Introduction). Calculate 𝐶�̅� (using your formula) and its uncertainty (by propagation 

from , using your formula and its derivative). (Results in table please, together with 

literature values,Results. Literature source Reference. Sample calculation 

Calculation).  
 
Propagation of error: Derive expressions for the relative error in the pressure, P, the 

ratio of heat capacities,  and the heat capacity at constant pressure, 𝐶�̅�. As an 

illustration of how to carry out these steps the first step is done for you. To calculate the 

error in the pressure, you treat pressure as a function of volume. 

𝑃(𝑉) =
𝑛𝑅𝑇

𝑉
 

The error in the pressure is 

𝜎(𝑃) = √(
𝜕𝑃

𝜕𝑉
)

2

𝜎(𝑉)2 

Once you have taken the derivative you could use a representative pressure and 
volume, e.g. standard temperature of 298 K at 1 atm of pressure to determine the 
relative error. Note that the relative error is 

𝜎(𝑃)

𝑃
 

 
so it is unitless. We show that this relative error can be determined from the relative 
error in the volume 

𝜎(𝑉)

𝑉
 

Which is obtained from the calibration line measured in the experiment. The 
propagation of error requires the derivative for an ideal gas. 

(
𝜕𝑃

𝜕𝑉
) = −

𝑛𝑅𝑇

𝑉2
 

Substituted into the formula for propagation of error we have 
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𝜎(𝑃) = √(
𝑛𝑅𝑇

𝑉2
)

2

𝜎(𝑉)2 

We can rearrange this expression 

𝜎(𝑃) = √(
𝑛𝑅𝑇

𝑉
)

2 𝜎(𝑉)2

𝑉2
 

 
To make it evident that it is a function of only pressure and volume 
 

𝜎(𝑃) = √(𝑃)2
𝜎(𝑉)2

𝑉2
 

which leads to  
𝜎(𝑃)

𝑃
=

𝜎(𝑉)

𝑉
 

 
You should be able to carry out similar procedures for 𝛾(𝑃, 𝑉) and , 𝐶�̅�(𝛾). 

 
Compare the error from propagation to error estimates obtained from replication. You 
have ten replicates of each data set. Use these replicates to estimate the error in 𝛾 
obtained from replication. Since ten measurements is not in the limit of large numbers 
you will need to apply to the t-test to estimate the error in terms of the 95% confidence 
limit. Note that if you determined the error in volume based on a 95% confidence limit 
then the propagated error for a single data set will also represent the 95% confidence 
limit. 

DISCUSSION 

Using the data points create a histogram of values of gamma obtained in a typical data 
set. Are your data normally distributed?  Was this histogram ‘expensive’ to obtain? 

What values for 𝐶�̅� and  would you theoretically expect for a monatomic ideal gas? 

Why is the 𝐶�̅� different for CO2? Compare your measured  𝐶�̅� and  values with 

theoretical and literature values. Discuss why the two temperature curves Treal and Tmeas 
may not coincide. What would happen to the slope value for Ar if the flushing would not 
be entirely successful and your gas sample contains a small amount of either air or CO2? 
Why is the cylinder made of a thick polymeric material rather than e.g. copper? Why is 
the intercept of the calibration curve more important than the slope? 

Checklist for your report 

1. Do all your measurements have a sign, a magnitude, a precision and a dimension 
(units!)? 

2. Have you carried out a detailed error propagation? 
3. Do all your tables and all your figures have captions? Axis labels? Units? Is their 

scaling and size appropriate? (Can the reader see what you want to show?) 
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* (=NORMDIST(x,,,false)) calculates the theoretical value of the probability density  of 

normal curve N(,2) at the point x. Because the bin-width is ½ we must scale this with 
N/2, to make sure the integral will sum up to N).  
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Lab 2. UV/VIS spectroscopy of d and f-electrons 
 
This laboratory requires a laboratory report.  
 
Introduction 
 

The fourteen 4fn orbitals are filled across the lanthanide series of elements (La-
Lu), much like the ten 3dn orbitals are gradually filled in the first transition metal series 
(Sc-Cu). Many of the lanthanides readily form divalent or trivalent ions in solution. Other 
oxidation numbers are possible too, but are less common. The lanthanides in particular 
have a strong preference for Ln3+. Both series tend to produce colored salts because the 
partially filled shells facilitate electronic transitions in the visible. In a flame where we 
have isolated ions in a hot plasma these transitions lead to sharp absorption peaks that 
can be used to determine small amounts of the element by Atomic Absorption 
Spectroscopy. In solution or solid state this is different because the environment plays a 
role and spectral broadening is the result. 

Broad absorption bands for d-d transitions 

 The transition metals have very broad d-d absorption bands that very little to do with 
the atomic spectrum and can only be understood in terms of molecular orbitals. The 
most important mechanism that causes such transitions to be broad is a strong coupling 
of electronic transition to the vibrationally excited states of the molecule (vibronic 
coupling).  

Sharp bands for f-f transitions 

Lanthanide ions in solution have absorption spectra that strongly resemble the isolated 
atomic spectra, but the overlap with the environment is not negligible.  Transitions 
between f-levels (f-f transitions) are relatively weak because the strongest mechanism 
(electron dipole coupling) is parity forbidden. Only magnetic dipole transitions are 
observed and they are generally much weaker. However through interaction with the 
environment (ligands) the parity rule can be broken a bit and this will enhance the 
absorption.  So even f-elements are not entirely insensitive to the environment in 
solution 

Lambert-Beer in mixtures 

In a solution of a single component that absorbs over a range of wavelengths we can 
apply Beer’s law at any wavelength that is absorbed by the solute s: 
Aλ = ελ.[s] 
It is usual to take the maximum of a peak in the spectrum as your working wavelength, 
because the sensitivity S= dA/d[s] = ελ is maximal there. However, this is not necessary; 
we could take a different part of the spectrum. It just has a different value of ελ! 



70 
 

  
If the peak of the absorption exceeds A = 1.0 - 1.5, the measurement loses linearity. 
Remember that 90% of the light is absorbed if A = 1.0 so only 10% of incident light 
makes it to the detector. In such cases, it is actually better to use the side of the 
mountain, not the peak. 
If you have two species, say s and t, in solution and the spectra overlap the measured 
absorbance at one wavelength is always a combination of two effects: 

Aλ(total) = Aλ(s)+ Aλ(t)= ελ(s).[s] + ελ(t).[t] 
Unless the peaks happen to be exactly at the same wavelength the peak of one would 
be a hill side of the other and vice versa. It is often not possible to pick a wavelength 
where only one species absorbs (especially for d-ions!). Nevertheless we can still 
measure both concentrations [s] and [t] if we measure at (at least) two wavelengths, 
e.g. the peak of one and the peak of the other: 

Aλ1=S-peak(total) = Aλ1(s)+ Aλ1(t)= ελ1(s).[s] + ελ1(t).[t] 
Aλ2=T-peak(total) = Aλ2(s)+ Aλ2(t)= ελ2(s).[s] + ελ2(t).[t] 

We can write these equations as a matrix product 

(
𝐴1

𝐴2
) = (

𝜀1(𝑠) 𝜀1(𝑡)
𝜀2(𝑠) 𝜀2(𝑡)

) . (
[𝑠]
[𝑡]

) 

Provided we calibrate the four extinction coefficients ελ(x) we can solve for the 
concentrations [s] and [t]: 

(
[𝑠]
[𝑡]

) = (
𝜀1(𝑠) 𝜀1(𝑡)
𝜀2(𝑠) 𝜀2(𝑡)

)
−1

. (
𝐴1

𝐴2
) 

We could use more wavelengths (of which we have a spectrum full!) but then the matrix 
ε with extinction coefficients will not be a square, so we should use a generalized 
inverse like (εTε)-1 εTA rather than a simple ε-1A. This would turn the calculation into a 
regression job. 
 
 
These are the calculated energy levels for the f3 ion Nd3+ and its f->f transitions. The 
energies are given in cm-1 (i.e. wavenumbers, note that wavelength[nm] = 
10,000,000*wavenumber[cm-1]). The transition to the state way in the UV cannot be 
observed because at those energies there are also other (much stronger f->d) 
transitions. 
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Lab instructions 

 
The TA will provide you with stock solutions of a 0.2 M Nd3+ (aqueous nitrate) and a 0.2 
Cu2+ (aqueous nitrate). These values assume you are using a 1.0 cm path length cuvette. 
A mixture of neodymium and copper nitrate of unknown concentrations will also be 
provided: 
 

 From the two metal solutions prepare four dilutions: 1:1, 1:2, 1:5 and 1:10.  
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 Collect spectra from 400 to 800 nm. For the analysis we will use the absorbances 
at 521, 573, 640 and 680nm. 

 Record the absorption spectra of the stock solutions and the four dilutions and 
write down the five absorbance values for each of the four wavelengths. Pay 
attention to the baseline.  Plot the spectra in Excel or Igor and examine a portion 
of the spectrum that has little absorption (i.e. is relatively flat). If it differs from 
zero by more than 0.005 you should add (or subtract) a constant to the entire 
spectrum. Since absorbances may be small in this experiment, small offsets may 
affect the result. This procedure will eliminate such artifacts.  

  Record the spectrum of the unknown and write down the absorbance at the 
same 4 values. Save this spectrum as well. You may want to compare the spectra 
later in your analysis. 

 Export the data and save the files. Use suggestive shorthand nomenclature such 
as Nd02.dat, Nd01.dat, Nd005.dat for the 0.2 M, 0.1 M and 0.005 M solutions, 
respectively. 

Data work up 

 
Combine your absorbance values from multiple runs to determine the molar extinction 
coefficients of both ions at 521, 573, 640 and 680 nm by linear regression.  
 
Prepare a table with the values of the extinction coefficients for the two species at the 
four wavelengths in column 1 and 2 and the absorbance of the unknown at those 
wavelengths in the third column. Then perform a regression of column 3 against 1 and 
2. Report the concentrations of both species in proper 2/15 format.  
 
Open the exported spectral files in Excel or Igor. Examine the spectra of the dilutions in 
the spectral region between 450 and 750 nm.  Identify which transitions are responsible 
for the neodymium spectrum.  These limits are chosen to include the 4 wavelengths and 
to frame the data nicely for making figures. 
 
Determine the concentration of unknowns using the matrix method. For our purposes 
we will use a 2x2 matrix. Choose two of the wavelengths that are appropriate. 
Appropriate wavelengths should have relatively high absorbance for one species and 
low for the other, one for Nd3+ and one for Cu2+. Use Excel to find the matrix inverse and 
solve the matrix equation. For a 2x2 you can always check your answer by hand, solving 
two equations with two unknowns. The brute force method does not work for a 3x3 or 
larger matrix, which is why the matrix method is so powerful. Here we are using the 
simplest case to learn the method. 
 
Report the values of the extinction coefficients with 95% CI and the concentrations of 
the two species in the unknown mixture. Also report the errors in those concentration 
using appropriate propagation of error.  
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Lab 3. Analysis of the FTIR spectrum of HCl 
 
This laboratory does not require a laboratory report. A worksheet must be completed 
for credit. 

INTRODUCTION  

 
 

 
 
 Fig. E7.1  Energy diagram for the process of IR absorption by HCl 
  
Using a Fourier Transform Infra-Red (FTIR) Spectrometer it is possible to resolve the 
rotational fine structure of the rotation-vibration transitions of a small linear molecule 
like HCl. Structural information about the molecule can be obtained from an analysis of 
this spectrum.  Taking into account only harmonic and rigid terms McQuarrie and Simon 
derive two different expressions [13.12] for the R branch and [13.13] the P branch. 
However, they can be combined. Using the variable m, defined below McQ[13.12] and 
McQ[13.13] both yield:  

𝜈𝑜𝑏𝑠 = 𝜈𝑒 + 2�̃�𝑚                                                                 (1)  
 

m  Ji + 1 for the R branch, where (J= +1), m  - Ji for the P branch, where (J= -1).   

νo νe 

With anharmonicity: ν0= νe- 2xeνe 
R 

R0 

E 

Harmonic oscillator E=h νe(v+½) 

R-branch P-branch 
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If we include anharmonicity (xee) McQ[13.21] and rotation-vibration interaction () 
McQ[13.17] terms the same treatment yields: 
 

𝜈𝑜𝑏𝑠 = 𝜈𝑜 + 2(𝐵𝑒 − 𝛼)𝑚 − 𝛼𝑚2                                            (2) 
 
where:  
𝜈 = the observed vibration frequency in wavenumbers cm-1 (as indicated by the tilde ~).  

𝜈𝑜= the frequency for a vibrational transition for J = 0, i.e. the (absent) Q branch. 
Be = the rotational constant for the equilibrium bond length R 

 = vibration-rotation interaction. 
 
The unit of cm-1 is the most common unit in spectroscopy. If you want to convert it to s-1 
you need to use the speed of light, but the units must be cm/s (c = 2.99 x 1010 cm/s). To 
convert cm-1 to Joules use the conversion factor hc, where h is Planck’s constant. 

EXPERIMENT 

 
In this experiment you will run the infrared spectrum of HCl in the vapor phase using an 
Excalibur Fourier Transform Infra-Red Spectrometer. The intensity of the absorption for 
each transition is a product of the population of the initial state and the absorption 
coefficient for the transition.  You will use the integrated intensities to test the 
applicability of the Boltzmann distribution prediction of the populations of the initial 
states. 
 
The HCl is introduced into a 10 cm quartz cell as two drops of hydrochloric acid, and the 
spectrum is taken of the vapor in equilibrium with this solution.  Quartz transmits 

between 2500 and 3500 cm-1.  That allows the HCl fundamental to be observed, i.e. we 
will look at the frequency of light that causes the process:   
 

                                 HCl(v = 0 ; Ji )   HCl(v = 1 ;Jf)  where Jf –Ji = J =  1  

 

Since we will only look at (v= 01), the fundamental frequency, we can only find the 
energy difference between the ground state and the first excited (vibr.) state, 𝜈𝑜, not 𝜈𝑒, 
the frequency corresponding to the curvature at the bottom of the parabolic potential 
curve (see McQ[13.22]). For the lines we study, the accompanying rotational change is 

either J = +1 (for R) or J= -1 (for P).  

A. CALCULATION OF MOLECULAR PARAMETERS 

 
First let us analyze the frequencies (peak positions) in the first column of the data. 
 
The major part of this assignment is an analysis of the infrared vibration-rotation 
spectrum of HCl in terms of the theoretical model discussed above  
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First try a regression fit of the equation:  𝜈=  a0 +  a1 m  + 
Use a residual plot to show that it is necessary to add a term  +  a2m2 to the model.  
Compare this polynomial (actually quadratic) model with Eq. 2 to identity of the 
coefficients as: 

                          a0 = 𝜈o  a1 = 2 �̃�e - 2    a2 = - 
This model allows for vibration-rotation interaction, but ignores the centrifugal 
distortion term -DeJ2(J+1)2  (see McQ[13.23])  Show a plot of observed frequencies and 

the calculated  vs. m and a residual plot. 
If the residuals are not random, it may be necessary to add another term to the 

polynomial and investigate whether the centrifugal distortion -DeJ2(J+1)2 could be 
responsible for such a term. Show a derivation along the lines of McQ[13.12/13] and use 

the definitions of m(Introduction). 

From these data you will calculate and report 𝜈0̃ , �̃�e and (and perhaps De). From 

�̃�𝑒 you will calculate the moment of inertia I and the bond length R.  Include calculated 
uncertainties with all calculated quantities using the method of propagation of 
uncertainties (or errors). Ignore possible covariance between the coefficients ai in the 
polynomial model. 
 
Hint: To do the error propagation, first express Be, I and R in terms of the parameters a0, 
a1, and a2. Then calculate weights for the variances (se

2(a0, 1, 2, 3)) by taking derivatives. 
Make sure you report and use the correct units.  
 

B.  FITTING THE BOLTZMANN DISTRIBUTION 

 
Secondly, let us analyze the intensities of the peaks.  Your data contains two values, 
both height and area, but one is clearly a better measure than the other, just look at a 
graph of area vs. frequency and height vs. frequency. One is smoother than the other, 
take the best one. From the above analysis the value for m and thus the initial value of J 
(Ji) is known. We will indicate the intensity value for a line with a certain initial J value as 
IJ below. 
 
We will go beyond simply finding the properties of the molecules to examine the 
prediction of the Boltzmann distribution and the relative intensities of the rotational 
lines.  The population, NJ, of the level with rotational quantum number J (with 

degeneracy gJ) is given by: 

𝑁𝐽 = (2𝐽 + 1)𝑒𝑥𝑝 {
ℎ𝑐�̃�𝐽(𝐽 + 1)

𝑘𝑇
} 

Using this formula we see that N0 = 1 (at J=0). Therefore, the relative population is:  

 
𝑁𝐽

𝑁0
= (2𝐽 + 1)𝑒𝑥𝑝 {

ℎ𝑐�̃�𝐽(𝐽 + 1)

𝑘𝑇
}                                        (3) 
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The factor gJ is the degeneracy of the level J. Because rotation wave functions are 
identical to the rotational part of hydrogen wave functions gJ = 2J+1. (s, p, d, f, g,..) 
The intensity of absorption of a rotational line departing from rotational level J, IJ, is 

given by: 
𝐼𝐽 = 𝜖𝐽𝑁𝐽                                                                       (4) 

   

For each line, the absorption coefficient J is given by Herzberg as being approximately 

proportional to the line’s frequency J.  Therefore the ratio of the intensity of a 
rotational line originating from rotational level J to that of a rotational level originating 
from the J = 0 level is: 

𝐼𝐽

𝐼0
=

𝜖𝐽𝑁𝐽

𝜖0𝑁0
≈

𝜈𝐽𝑁𝐽

𝜈0𝑁0
 

                                             (5) 
And  

𝐼𝐽

𝐼0
≈

𝜈𝐽

𝜈0

(2𝐽 + 1)𝑒𝑥𝑝 {−
ℎ𝑐�̃�𝐽(𝐽 + 1)

𝑘𝑇
} 

    

In this expression 0 is the frequency of the first transition (i.e. first rotational line in the 
R branch). The mean of the 0 here is that the transition originates from the zero state. It 

is a 0 -> 1 transition. In general, J corresponds to a J  ->  J + 1 transition. From Equations 
2 and 4 one can derive a formula to plot the relative intensities of different lines such 
that we should get a straight line.  We can linearize the formula by taking the logarithm 
of both sides: 

𝑙𝑛 (
𝐼𝐽

𝐼0

𝜈0

𝜈𝐽
) − 𝑙𝑛(2𝐽 + 1) = −

ℎ𝑐�̃�

𝑘𝑇
𝐽(𝐽 + 1)                                   (6) 

 
This means that if you plot:  
 

𝑙𝑛(2𝐽 + 1) − 𝑙𝑛 (
𝐼𝐽

𝐼0

𝜈0

𝜈𝐽
)    𝑣𝑠.        𝐽(𝐽 + 1)                                  (7)   

 
You should get a straight line. From a regression you can extract the temperature. Be 
sure to include the error in the slope obtained from the fit and then to use propagation 
of error to obtain an error in your estimated temperature. The correct value should be 
less than 298 K since the building is usually not that warm during the winter months. 
 

DISCUSSION 

 
The data consist of two branches, the P and R branches. We will limit the analysis to the 
R branch.  
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1. Once you have obtained data converted to absorbance, you should make a table 
consisting of the rotational quantum number (column 1) and the wave number 
of the corresponding transition (column 2). Initially you can treat this as a linear 
regression and obtain a first estimate for the rotational spacing and the limiting 

wavenumber corresponding to J = 0.   
2. Using the calculated rotational constant, calculate the H-Cl bond length. 
3. Using the estimated vibrational frequency calculate the bond force constant for 

the H-Cl stretch. 
4. Subsequently use a quadratic regression to obtain a more refined estimate of 

the rotational constant and the rotational-vibrational interaction. 
5. What is the change in estimated bond length and force constant using these new 

estimates. 
6. Estimate the temperature using the method described above by entering the 

appropriate values from Eqn. 7 into the excel spreadsheet and carrying out the 
linear regression. 

 
Some Excel hints: 
 
To do a quadratic regression create a column of the linear values of x (the A column), a 
column of the quadratic values of x2 (the B column) and your y values (the C column). 
The select a range of 5 rows x 3 columns and type  
 
=linest(Cfirst:Clast,Afirst:Blast,TRUE,TRUE)  
 
and use Ctrl+Shift+Enter to activate the formula. For the linear model you only need 2 
columns, but for the quadratic model you will need three columns (e.g. for a model with 
ca term more use a column more.) The first row of the linest range contains the 
coefficients of the model in reverse order, i.e. for Y=a + bX+ cX2 you get c,b,a. In two 
additional columns, use these parameters to construct a fit value for each data point 
and, by subtraction, a residual. Graph the data plus the fit versus m.  
 
INSTRUCTIONS FOR THE WORKSHEET 
 
Please turn in the Excel spreadsheet with spectrum and processed spectrum. Graph the 
absorption spectrum.  
 

1. Provide the line spacing and center wavenumber, 𝜈o, obtained from linear 
regression. 

2. Provide the calculated rotational constant and show the calculation of the H-Cl 
bond length. 

3. Using the center wavenumber show the work and provide the force constant for 
the H-Cl bond. 

4. Repeat the above calculation using a quadratic regression. 
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5. Compare the values obtained from linear and quadratic regressions to each 
other. Compare calculated molecular parameters with those listed in Simon & 
McQuarrie p. 499 or another standard source.  

6. Show how you estimated the temperature in the cuvette using the intensities 
(which you can assume are proportional to the peak value of each absorption 
line). Compare the calculated temperature with your best guess of the 
temperature in the sample chamber. 

7. Why is there no absorption at 𝜈0? 
8. What is the difference between 𝜈0 and 𝜈𝑒? [Cf. McQ & Simon Eq 13.21 

(Remember v: 01) and see figure E7.1 above] 
 
Some useful constants: 
mH= 1.007825 au, m35= 34.968853 au m37= 36.965903 au, 1 au =1.660540 10-27 kg. 
h = 6.626076 10-34 Js, kB= 1.38066 10-23 J/K. c = 2.99792458 1010 cm/s. 

Careful: �̃� is in cm-1 (not m-1)   
 

References:  

 
1. Shoemaker, Garland, and Nibler, Experiment 38 and pages 758-763. 
2. P. W. Atkins, Physical Chemistry (5th ed) 569-576. 
3. McQuarrie & Simon, Physical Chemistry,  Ch 13 
4. Herzberg, G. Infrared and Raman Spectra of Diatomic Molecules 
5. Pattacini, S.C., J. Chem Educ., 1996, 73, 822. 
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WORKSHEET: Fourier Transform Infrared study of HCl 
 
Please turn in the Excel spreadsheet with spectrum and processed spectrum. Graph the 
absorption spectrum.  Please print this worksheet and upload the scanned or 
photographed completed work. 
 

1. Provide the line spacing and center wavenumber, 𝜈o, obtained from linear 
regression. 
 
 
 
Line spacing = _________________(cm-1).      𝜈o = ___________________(cm-1). 

2. Provide the calculated rotational constant and show the calculation of the H-Cl 
bond length. 
 
 
 
 
 

�̃�e = __________________(cm-1).     𝑑(𝐻 − 𝐶𝑙) = _____________________(Å). 
3. Using the center wavenumber show the work and provide the force constant for 

the H-Cl bond. 
 
 
 
 
 
 
𝑘 = __________________(N/m). 

4. Repeat the above calculation using a quadratic regression. 
 
 
 
 
 
 
 
 
 
Line spacing = __________________(cm-1). 𝜈o = _____________________(cm-1). 
 

�̃�e = __________________(cm-1).     𝑑(𝐻 − 𝐶𝑙) = _____________________(Å). 
 
𝑘 = __________________(N/m). 
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5. Compare the values obtained from linear and quadratic regressions to each 

other. Compare calculated molecular parameters with those listed in Simon & 
McQuarrie p. 499 or another standard source.  
 
 
 
 
 
 
 

𝑑(𝐻 − 𝐶𝑙) = _____________________(Å)  from the linear regression. 
 

𝑑(𝐻 − 𝐶𝑙) = _____________________(Å)  from the quadratic regression. 
 

𝑑(𝐻 − 𝐶𝑙) = _____________________(Å)  from literature. 
 
What is the percent difference of each? 
 
𝑘 = __________________(N/m) from the linear regression. 
 
𝑘 = __________________(N/m) from the quadratic regression. 
 
𝑘 = __________________(N/m) from literature. 
 
What is the percent difference of each? 
 

6. Show how you estimated the temperature in the cuvette using the intensities 
(which you can assume are proportional to the peak value of each absorption 
line). Compare the calculated temperature with your best guess of the 
temperature in the sample chamber. 

 
 
 
 
 
 
 
 
 
 

T = _______________________ K  from data. 
 
T = _______________________ K  from your estimate of room temperature. 
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7. Why is there no absorption at 𝜈0? 
 
 
 
 
 
8. What is the difference between 𝜈0 and 𝜈𝑒? [Cf. McQ & Simon Eq 13.21 

(Remember v: 01) and see figure E7.1 above] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Some useful constants: 
mH= 1.007825 au, m35= 34.968853 au m37= 36.965903 au, 1 au =1.660540 10-27 kg. 
h = 6.626076 10-34 Js, kB= 1.38066 10-23 J/K. c = 2.99792458 1010 cm/s. 

Careful: �̃� is in cm-1 (not m-1)   
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Lab 4. Fluorescence of native tryptophan and accessibility 
to dissolved quenchers 
 

Adapted from: Möller, M; Denicola, A. Biochemistry and Molecular Biology Education 
2002, 30, 175–178. 

Objective 

The nature of chemical fluorescence provides many potential applications for the 
investigation of chemical and physical properties of analytes. From simple concentration 
measurements and reporter functionality to inter-/intra- molecular distances 
measurements and imaging, fluorescence has a wide range of applicability within 
analytical science. While some experiments require the introduction of fluorescent dyes, 
biological systems contain natural fluorophores, or are ripe for mutation to produce 
naturally occurring fluorescent molecules. As such, fluorescence has become an 
important tool for the investigation of biochemical and biological information. This 
experiment utilizes the native fluorescence of the amino acid tryptophan and the 
tendency of certain chemical additives to reduce fluorescence intensity (known as 
quenching) to gain information about protein structure.  

Background 

Spectroscopic methods can reveal a great deal about the nature of an analyte through 
the interactions of light and matter. The electronic transitions induced by light adsorption 
and emission reveal not only a great deal about the intrinsic electronic structure, but can 
also be used as tools to probe the relationship of the molecule with its surroundings. 
Fluorescence emission is of particular for studying environmental interactions due to the 
various mechanisms of molecular interaction involving the fluorescent excited state. 
When a molecular absorbs incident radiation of the appropriate wavelength it promotes 
electrons from the ground state to one of many potential higher energy states. 
Vibrational and non-radiative relaxation can occur to return the molecule to less excited 
states, or a combination of relaxation and emission can occur. Fluorescence emission 
occurs through a radiative transition from singlet excited state to a lower ground state 
while Phosphorescence occurs as the result of an intersystem crossing from a singlet 
excited state to a triplet excited state, followed by a radiative transition to the ground 
state (Figure 1).  
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Figure 1. Jablonski diagram 
for molecular spectroscopic 
transitions 

 
 
Because of the complexity of the electronic structure of molecules the both the 
absorbance and emission transitions form spectra over a range of wavelengths (Figure 2). 
 

 
Figure 2. Overlaid absorbance and fluorescence emission spectra showing the 
characteristic Stokes shift and the “mirror-image” rule.  
 
To obtain the fluorescence emission spectrum the sample is illuminated with light of a 
single wavelength and the emitted light is scanned through the entire spectral range. It is 
also possible to collect a fluorescence excitation spectrum by measuring the light emitted 
at a single wavelength while the incoming light wavelength is scanned through a 
spectrum. The excitation spectrum is very similar to the absorbance spectrum but can be 
collected using a fluorimeter setup rather than an absorbance setup.  
When comparing the absorbance and fluorescence emission spectra for a single molecule 
the wavelength of maximum intensity, as well as the majority of the spectrum, is generally 
shifted toward longer wavelengths for fluorescence than absorbance; this phenomenon 
is known as the Stokes shift. The reason for this occurrence is apparent from a close 
analysis of the Jablonski diagram in Figure 1. Absorbance occurs from the ground 
electronic state (S0) to an excited electronic state (Sn) and is accompanied by an increase 
in the vibrational energy level as well. However, fluorescence emission occurs only from 
the ground vibrational state and therefore some energy is lost between the absorption 
and emission, resulting in the observed shift in wavelength.  
An additional feature of many fluorescent spectra is that they appear as mirror images of 
the absorbance spectrum. This is the result of the fact that the same quantum mechanical 
characteristics that make certain absorption transitions most probably also make the 
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equivalent emission transition the most likely to occur. However, due to the fact that all 
emission takes place from the ground vibrational state the emission spectrum transition 
energies are Stokes-shifted, giving a mirrored emission spectrum.  
The myriad transitions involved in absorbance and fluorescence occur very quickly (10-15-
10-12s) but the lifetime of the excited state is many orders of magnitude longer (10-9-10-

7s). While this timeframe is still very short from a human perspective, it is more than long 
enough for chemical reactions to occur or for the molecule to interact with nearby species 
in the environment. Therefore, it is possible for the fluorescent excited state to 
experience quenching wherein the state decays through a non-radiative pathway and 
fluorescence emission is lost. Quenching is a broad term that covers all interactions that 
reduce the fluorescence of a species; we will discuss only a simple quenching mechanism 
here.  
Dynamic or collisional quenching is the non-radiative decay process that occurs as the 
result of energy transfer between the excited state fluorophore and a quenching agent in 
contact with it. The transitions of fluorophore X for absorbance (eq. 1), fluorescence (eq. 
2), and dynamic quenching in the presence of quencher Q (eq. 3) are shown below.  

𝑋 + ℎ𝜈 → 𝑋∗    (eq. 1) 
𝑋∗ →  𝑋 + ℎ𝜈    (eq. 2) 
𝑋∗ + 𝑄 → 𝑋𝑄∗ → 𝑋 + 𝑄  (eq. 3) 

 
For this type of quenching the quenched fluorescence intensity (I) is related to the 
unquenched fluorescence  (I0) by the concentration of quencher ([Q]) and the lifetime of 
the fluorophore excited state (τ) in what is known as the Stern-Volmer relationship (eq. 
4). 

𝐼0
𝐼⁄ = 1 + 𝑘𝜏[𝑄] (eq. 4) 

 
The value of k is a bimolecular quenching constant that can be experimentally determined 
only when the fluorescence lifetime is known. Because lifetime measurements requires 
an additional experiment, it is more common to use the Stern-Volmer constant (Ksv), 
which can be determined in a single experiment, and which is defined as the product of k 
and τ.  
For most proteins of appreciable size there are multiple potential fluorescent residues. If 
these amino acids are not in equivalent positions the Stern-Volmer plot is non-linear and 
the relationship of total fluorescence to [Q] is defined based on the fluorescence of each 
species. An equation for a protein containing two non-identical tryptophans with 
unquenched fluorescence I0’ and I0’’ is shown (eq. 5) but can be extrapolated to three or 
more residues.  

𝐼 =
𝐼0

′

1+𝐾𝑆𝑉
′ [𝑄]

+
𝐼0

′′

1+𝐾𝑆𝑉
′′ [𝑄]

  (eq. 5) 

 
The Stern-Volmer relationship has practical application in the study of natively fluorescing 
systems such as proteins. In proteins containing native aromatic residues, an intrinsic 
fluorescent signal can be obtained, and the addition of quencher can be used to modify 
the fluorescent intensity. However, not all fluorescent amino acids are equally exposed 
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to potential quenchers due to the conformation of the protein and the relative size and 
identity of the quenchers. The Stern-Volmer constant can be used to estimate the degree 
of quencher accessibility to known fluorescent residues by measuring the fluorescent 
intensity under different conditions. For example, the denaturation of a protein unfolds 
its secondary structure and exposes residues that were buried in the protein core, 
inaccessible to solvated quenchers. A characteristic increase in the Ksv for a buried 
tryptophan would therefore be expected as a protein is measured in more denaturing 
solution conditions.  
A wide variety of quenchers can be used, including molecular oxygen, halogen ions, 
acrylamide, and more. The choice of quencher can reveal additional data as well; large 
quenchers are unable to access residues in small pockets that are accessible to small 
quenchers, polar quenchers are unable to partition into hydrophobic protein cores but 
hydrophobic quenchers partition there preferentially, and charged quencher efficiency 
can be hindered by local ionic strength, all of which can yield useful information about 
protein structure with proper experimental design.  

Pre-Lab 

Answer the following questions in your lab notebook prior to the experiment. 
Information gathered here will help you prepare for lab and for writing the lab report. 

1. On a single set of axis sketch Stern-Volmer plots for a globular protein containing 

a single tryptophan residue in its core region under each of the following buffer 

conditions and justify the shapes you draw: 6mg/mL protein in pH 7.4 phosphate 

buffer; 6 mg/mL protein in 3M Urea; 3 mg/mL protein in 12M Urea.  

Note: Urea is a strong protein denaturant.  
2. Lookup the expected emission wavelength maxima for free Tryptophan in solution 

vs tryptophan emission from OVA and BSA (using an excitation of 280nm) 
3. Starting with the following provided solutions: 100mM pH=7 phosphate buffer, 

3M NaCl, 1M KI, 50µM L-tryptophan, 5mg/mL Bovine Serum Albumin (BSA), 
10mg/mL Ovalbumin (OVA), devise dilution schemes to prepare 4 sets of 
calibration standards directly in provided cuvettes (target final volume 3.5mL) as 
described in the procedure below. 

Safety & Disposal 

Potassium Iodide is a potential irritant and carcinogen, avoid contact and flush affected 
areas with running water. Samples containing protein should be disposed of in the 
labeled waste container.  

Procedure 

You will be provided with the following stock solutions: 100mM pH=7 phosphate buffer, 
3M NaCl, 1M KI, 50µM L-tryptophan, 5mg/mL Bovine Serum Albumin (BSA), 10mg/mL 
Ovalbumin (OVA) 

1. With no sample loaded into the fluorimeter, perform an excitation measurement 

using the default settings. The excitation spectrum of air should have its 
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maximum peak at 467nm. If the peak is not in its expected location, recalibrate 

the wavelengths. 

2. Fill a fluorimeter cuvette with distilled water and measure the emission 

spectrum using the default settings (excitation at 350nm, slit widths 5nm). The 

sample should give a smooth curve with a maximum at 397nm. If the peak 

maximum is not in the expected location recalibrate the wavelength as described 

above. 

3. Prepare the following solutions in 100mM phosphate buffer 

a. 2.5 µM Tryptophan 

b. 50 µg/mL BSA 

c. 100 µg/mL OVA 

4. For each of the prepared samples collect an emission spectrum with an 

excitation wavelength of 280nm (slit width 1nm). 

5. For each spectrum collected determine the wavelength of max emission 

6. For each of the analytes prepare five additional samples with Iodine 

concentrations of 1-50mM and the same analyte concentration as in (3). For BSA 

prepare an additional set of five with the same Iodine concentration and a 

constant final 2M NaCl  

7. Measure the fluorescence intensity for each of the iodine containing samples 

using the wavelengths determined in (5). 

8. Graph the Stern-Volmer plots (Io/I vs. [Iodine-]) for each of the data sets and 

calculate KSV 

Post-Lab 

Write a formal lab report and answer the following questions: 
1. How does the value of KSV for OVA compare to that of free L-Trp? Justify this 

relationship. 

2. For a system containing multiple tryptophans it occasionally occurs that one or 

more is inaccessible to quencher. Using eq. 5, derive the following equation for a 

protein of interest that has two tryptophan residues with one that is completely 

inaccessible to quencher.  
𝐼0

𝐼0 − 𝐼
=

𝐼0

𝐼′0𝐾′𝑆𝑉
∙

1

[𝑄]
+

𝐼0

𝐼′0
 

 
Use your data to plot I0/(I0-I) vs 1/[I-] and use it to determine what percentage of 
fluorescence in BSA comes from quenchable tryptophan (the fraction of 
fluorescence is due to the quenchable tryptophan is the inverse of intercept) and 
to determine K’sv of the quenchable tryptophan (intercept/slope). Do your findings 
make sense given what you know of the structure of BSA? Explain.  
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3. You should note that at low ionic strength the BSA Stern-Volmer plot does not 

show a perfectly linear relationship. Estimate the Ksv values for the curve 

assuming it is a combination of two linear functions.  

4. Make sure to include table summarizing your solution preparations (volumes 

added of each ananlyte/solvent/reagent..etc.).  

5. Report all calculated values to the correct number of sig figs (2&15 rule) and 

report errors.. 

6. include figures with the emission spectra and all generated straight lines (an 

trumpets) 

7. Consult the following references and explain the observed behavior of BSA 

fluorescence including the effect of changing ionic strength and the source of 

biphasic quenching: 

References 

1. Skoog, D. A. Principles of instrumental analysis; 6th ed.; Thomson Brooks/Cole: 
Belmont, CA, 2007. 

2. Möller, M; Denicola, A. Biochemistry and Molecular Biology Education 2002, 30, 

175–178. 

3. Lehrer, S. S.; Leavis, P. C. In Methods in Enzymology; C.H.W. Hirs, S. N. T., Ed.; 
Academic Press, 1978; Vol. Volume 49, pp. 222–236. 

4. Möller, M.; Denicola, A. Biochemistry and Molecular Biology Education 2002, 30, 
175–178. 
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Lab5. Determination of the pKa of phenolic acids by 
reversed-phase HPLC 
Reference: J. Chem. Educ. 2018, 95, 310−314 
 

Objective 
In this experiment, you will consider a model that describes the effect of pH on 
retention in HPLC and use it to determine the 𝑝𝐾𝑎1

 value of a phenolic acid, ferulic 

acid (Figure 1). This requires the determination of chromatographic retention factors 
as a function of the mobile phase pH. You will use your determined retention factors 
and activity coefficients and mobile phase pH to perform nonlinear regression and 
calculate the pKa1 of ferulic acid and its standard error.  
 

 

             
Figure 1. Chemical structure of ferulic acid 

 
Background 

 

The model used here1 to determine the Ka1 value by reversed-phase HPLC is based on the 

dependence of the chromatographic retention factor k, which is calculated by Eq. (1), on 

the pH of the mobile phase. The tr and tm in Eq. (1) represent the retention times of the 

retained and unretained components respectively.  

 

𝑘 =
(𝑡𝑟−𝑡𝑚)

𝑡𝑚
                    (1) 

The retention factor of a ionizable compound at a given H+ activity, aH+, is a weighted 

average of the retention factors of the deprotonated and protonated forms, kA- and kHA, of 

the solute as described by Eq. (2) where xi represents the mole fraction.  

 

𝑘 = 𝑥𝐻𝐴𝑘𝐻𝐴 + 𝑥𝐴−𝑘𝐴−                                   (2) 

 

Substitution of the expressions for the mole fractions xHA and xA- in (2) gives Eq. 3 

 

𝑘 =
[𝐻𝐴]𝑘𝐻𝐴+[𝐴−]𝑘𝐴−

[𝐻𝐴]+[𝐴−]
                                                                    (3) 

 

Substitution of the acid dissociation constant, Ka, Eq. (4) into Eq. (3) and rearranging gives 

Eq. 5 which is used in this experiment to determine the Ka of ferulic acid where is the 

calculated activity coefficient.  

 

𝐾𝑎 =
(𝑎𝐴−)(𝑎𝐻+)

𝑎𝐻𝐴
=

[𝐴−]𝛾𝑎
𝐻+

[𝐻𝐴]
                                   (4) 
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  𝑘 =
𝑘𝐻𝐴+

(𝑘𝐴−)(𝐾𝑎)

𝛾(𝑎
𝐻+)

1+
𝐾𝑎

𝛾(𝑎
𝐻+)

                                              (5) 

 

The activity coefficient is calculated using the extended Debye-Hückel equation: 

 

    −𝑙𝑜𝑔𝛾 =
𝐴√𝐼

1+𝑎0𝐵√𝐼
                                                                  (6) 

The ionic strength, I, of the mobile phase will be estimated from the buffer preparation. 

Literature values of the Debye- Hückel constants A and a0B in 30%CH3CN will be used 

here.2 

 

Pre-lab questions 

 

Answer the following questions in your lab notebook prior to the experiment. Information 

gathered here will help you prepare for lab and for writing the lab report. 

 

- Lookup the literature values of pKa for ferulic acid (Fig. 1). Also, lookup the pKa1 

value in 30%CH3CN mobile phase system used in this experiment and in different 

percent organic compositions. How does the increase in percent organic affect the 

value of the pKa? Can you suggest an explanation for this trend?  

- What is the pKa of formic acid? Describe how you will prepare 1L of 30mM formic 

acid buffers (e.g. show your calculations for the pH 4 buffer). The starting materials 

are solid sodium formate and 1M HCl solution. Specify how you will calibrate your 

pH meter. 

- Show a sample calculation of the ionic strength, I, using the pH 4 buffer prepared 

above. 

- The column that will be used in this experiment is a 150 x 4.6mm Agilent Zorbax 

S8-Aq C18 column with 3.5m particle size. How will the retention time of ferulic 

acid change if (a) the pH of the mobile phase increases? (b) if 20% CH3CN is used 

instead of 30% in the mobile phase? Why? 

 

Procedure 

 

Stock solutions of nominal 0.02M ferulic acid in acetonitrile and 0.03M KBr in deionized 

water will be provided. 

Formic acid buffers (ca.30 mM) in the range pH 2.7-5.5 will be needed for the HPLC 

mobile phase. Use at least 5 buffer solutions and make sure you cover the full desired pH 

range. 

For each HPLC injection, you will prepare a sample by measuring 100 L of the ferulic 

acid with 300 L KBr from the stock solutions into a 10mL volumetric flask and adjusting 

to the mark with the pH buffer solution for that injection.  

Agilent 1200 HPLC system will be used with a binary pump and diode array UV/Vis 

detection and a (Agilent Zorbax S8-Aq) C18 column (4.6x150mm) packed with 3.5 m 

particles. 
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Setup your HPLC method to pump 30%B and 70%A, Solvent B is acetonitrile and solvent 

A is the formate buffer. Select wavelength detection at 270 nm (ferulic acid) and 220nm 

(KBr), and a flow rate 1 mL/min.  

For each buffer, record the pH of the solutions of that buffer mixed with water in the ratio 

30%CH3CN:70% Buffer. Calibrate the pH electrode using the aqueous calibration 

standards available in the lab. Record the temperature at which the chromatographic runs 

are performed using a stick-on thermometer placed on the column. 

The standard operating procedure for setting up and performing your HPLC runs will be 

available in the lab. 

 

1) Follow instructions to purge and equilibrate the column with the first mobile phase 

(30% CH3CN - 70% Buffer) 

2) Half fill the autosampler vial with the first mixture solution prepared in the current 

mobile phase buffer as described above 

3) Run an injection (30 L) and save the chromatogram. (injections run from 2-5 

minutes depending on the pH and the column). Repeat and save a replicate 

chromatogram. Verify that retention times are reproducible. this will be your 

indicator that the column has equilibrated at the pH of the mobile phase. If not, 

allow 5 more minutes of equilibration and repeat the injection. 

4) Turn off the mobile phase flow and replace the line A bottle with the second buffer. 

5) Turn the pump back on and equilibrate with (30% CH3CN - 70% Buffer) for 15 

minutes 

6) Repeat steps 2-5 with the remaining buffers 

7) Record all retention times in your notebook. 

8) Exported data as .csv files to plot the chromatograms in Excel. Make sure to export 

the signals at 270nm and 220nm 

 

Submit a full lab report with the usual sections, Abstract, Introduction, Experimental, 

Results, Discussion, and Conclusion. Include general considerations of the retention of 

ionizable compounds in reversed-phase HPLC, how the electrostatic and solvent effects 

impact the value of the acid dissociation constant and other fundamental aspects. Include 

all your experimental data (table with pH, aH+ and retention factors) and chromatograms 

collected at different pH (1 graph with clear legend identifying each chromatogram). 

Briefly describe buffer preparation (if buffers already prepared for you, you will be 

provided with the procedure) and show calculations of ionic strengths and activity 

coefficients (use Debye Huckel coefficients from reference 3. 

Use Solver in Excel to perform nonlinear regressions (k vs aH+) and find 𝐾𝑎1
, 𝑘𝐻𝐴 and 𝑘𝐴− 

values. Use the literature 𝐾𝑎1
 value and the extreme retention factor, k, values as a starting 

point to fit the nonlinear model. Include the fitting graph and residual plot in your lab 

report. Use the SolvStat add-in in Excel to determine the standard error in the three 

regression parameters, 𝐾𝑎1
, 𝑘𝐻𝐴  and 𝑘𝐴− . Calculate 𝑝𝐾𝑎1

 and its error. List values in a 

table and corresponding errors (using the 2/15 rule) 

Compare to literature value in the same 30%CH3CN system and comment on sources of 

error. Compare 𝑝𝐾𝑎1
 values to values determined in aqueous solutions and consider how 

electrostatic and solvation effects impact the value of the acid dissociation constant. 
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Consider in your discussion the values of kHA and kA- values, which one is larger? Is this 

what you would expect? And how did the retention times change with the pH of the mobile 

phase? Is that what you would expect? 

 

Use the provided instructions for using Solver and SolvStat in Excel.  

 

References:  

1. Horváth, C.; Melander, W.; Molnr, I. Liquid chromatography of ionogenic 

substances with nonpolar stationary phases. Anal. Chem. 1977, 49(1), 142-154. 

2. Barbosa, J.; Sanz-Nebot, V. Autoprotolysis constants and standardization of the 

glass electrode in acetonitrile-water mixtures. Effect of solvent composition. 

Analytica Chimica Acta 1991, 244, 183-191. 
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Lab 6. Plasticizer Analysis using Temperature 
Programmed GC-MS 

Objective 

Gas chromatography (GC) is a commonly employed separation method for the analysis of 
volatile samples in a variety of industrial and analytical applications. The separation 
mechanism consists of the differential partitioning of volatile species into the stationary 
phase but unlike liquid chromatography separations the composition of the mobile and 
stationary phases has only a minor effect on selectivity. Instead, separation is primarily 
accomplished through manipulation of temperature in a process known as temperature 
programming. This laboratory focuses on the use of temperature in GC separations; both 
an isothermal separation of closely retained compounds and a temperature-programmed 
separation of a homologous series will be performed. 

Background 

GC differs somewhat from its sister technique, liquid chromatography (LC), in that the 
flowing mobile phase is an inert gas, commonly helium, and all interaction is therefore 
between the analyte molecules and the stationary phase rather than being a competition 
between interactions with both phases. Furthermore, the samples analyzable by GC must 
be either inherently volatile, able to be vaporized without decomposition, or derivatized 
to volatilizable form since all analysis is carried out in the gas phase. For species that are 
able to be analyzed by GC however, the method offers great advantages over LC due to 
the increased resolution provided by the technique; the ability to use more universal 
detectors with better quantification than the detectors available to LC; and its easy 
coupling to additional dimensions of separation, including Mass Spectrometers. The 
efficiency of the technique can be explained utilizing the Van Deemter equation. Because 
GC separations take place in a long, open-tubular column, there is no packing material to 
yield an A term in the equation, reducing the plate height significantly; the open tube 
generates no significant backpressure, allowing for extremely long columns (50+ m in GC 
compared to 150mm in HPLC); and the lack of stagnant mobile phase within particles 
gives a reduced (but not eliminated) C term. 
 
In gas chromatography the equilibrium partitioning is distinct from liquid-liquid 
partitioning in LC because it includes the liquid-gas phase transition. This means that, in 
contrast to liquid chromatography, temperature exhibits a large effect on the degree of 
partitioning into the stationary phase and specific intermolecular interactions with the 
stationary phase are only a partial player in partitioning behavior.  Control of the retention 
time and selectivity, is somewhat limited in GC compare to in LC due to the limited 
number of interactions that are possible in partitioning. Changing the stationary phase is 
the only method for adjusting selectivity (α) to obtain different separations since the 
mobile phase is non-interacting, but controlling partitioning on a given column is 
achievable by adjusting the column temperature; with higher temperatures compounds 
have reduced partitioning into the stationary phase and faster elution times. Two 
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compounds with different boiling points are thus easily separated by heating the GC 
column to a temperature where one species is significantly more volatile than the other. 
If no single temperature is capable of providing good separation while also allowing for a 
relatively speedy separation, a gradient of temperatures can be applied such that early 
eluting compounds experience a relatively low temperature for their separation, and later 
eluting compounds are more quickly removed by an increased temperature.  
Information pertaining to the specifics of Gas Chromatography instrumentation can be 
found in literature reviews (see references), or in the appropriate chapter in an 
instrumental analysis textbook. 
While reference data for α values for species in comparison to reference analytes are 
available for some analytes in the literature, the overall coverage is not sufficient for this 
to be an effective method for analyte determination. Retention index values are readily 
available on many common columns for certain analytes, but do little for the analysis of 
unstudied or poorly studied compounds additional methods of sample characterization 
are necessary. Thankfully, GC lends itself readily to coupling with mass spectrometry (MS) 
to form the hyphenated technique GC-MS, which is capable of eliciting a large amount of 
information from samples. MS is a separation technique in its own right and a thorough 
discussion of its capabilities and instrumentation are too extensive to detail, some 
relevant information is available below.  
 
The fundamental mechanism of a mass spec is the separation of ions based on their mass-
to-charge ratio. The basic layout of a mass spectrometer consists of an ionization source, 
which produces ions from an initial sample, a mass selector, which is the mass separating 
component, and a detector, which generates a signal for separated ions. The various 
combinations are extensive and we will limit our discussion of mass spec for this 
laboratory to a single ionization source electron impact ionization which is equipped to 
the GC-MS, and its mass selector, the quadrupole.  
 
Electron impact (EI) is what is known as a hard ionization source, which means that it will 
heavily fragment analyte molecules to produce ions. The other forms of ionization, soft 
ionization sources, generate mostly molecular ions and few, if any, fragments as the direct 
result of ionization. The EI source functions by colliding analyte molecules with a high 
energy electron (~70eV) to remove an intrinsic electron and produce a charged radical 
ion for analysis: 

𝑀 + 𝑒− → 𝑀+∎ + 2𝑒− 
This molecular ion is often detected by the mass spec, but it also has the potential to 
further fragment itself and produce fragments that can be detected. The mechanisms of 
fragmentation are extremely varied and will not be covered in this background section 
but an example is shown (Fig 2).  
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Figure 2. Mechanism of one potential fragmentation pattern for a simple ether. Two 
fragments are produced, but only the charged species can be detected. 
 
Once ions are produced they are filtered using a quadrupole mass filter (Figure 3). The 
detected ions can be used to generate a total ion chromatogram (TIC) which shows the 
total number of ions detected at a given time, and is analogous to the chromatogram 
generated by a UV detector in HPLC, or a flame ionization detector in standalone GC, but 
the function of the quadrupole allows for much more information to be obtained than a 
simple chromatogram.  
 

 
Figure 3: Quadrupole mass filter. Ions enter from the ion source and are channeled by 
charged robs. Ions within the filter range pass to the detector while those outside are 
excluded.  
 
The basic operating principle of a quadrupole consists of the following: charged rods have 
a constant DC voltage applied, which is modulated with an AC current. The current 
modulation causes the poles to switch sign of the voltage, resulting in ions oscillating 
between rods as they pass down the column. When the voltages are tuned correctly, this 
oscillation allows only ions of a particular m/z through. Ions with masses that are too high 
or too low drift out of the quadrupole center and are wicked away from the detector. The 
quadrupole is capable of rapidly scanning through mass ranges and therefore isolated 
each m/z value in sequence. This allows for the rapid collection of an m/z spectrum for 
an incoming analyte.  
 
The MS is able to identify the mass to charge ratio of the produced fragments with a high 
degree of precision and the fragmentation process produces distinct fingerprints for 
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different compounds which enables the determination of analyte identity. The produced 
fragments and fragment patterns can be either analyzed by hand and compared to known 
fragmentation rules and patterns to determine the structure of the unknown analyte, or 
an algorithm can be used to search the mass spectrum against libraries of known 
structures. A samples mass spectrum of pentanol with a few peaks labeled is shown (Fig 
4). 

 
Figure 4. Mass Spectrum of 1-Pentanol after fragmentation with an electron impact 
source. The molecular ion (M+) is weak while peaks corresponding to the M+ with 
fragment losses are relatively abundant. 

Pre-Lab 

Answer the following questions in your lab notebook prior to the experiment. 
Information gathered here will help you prepare for lab and for writing the lab report. 
 
1. Lookup information on the HP-5MS (or DB-5MS) that will be used in this experiment; 

what is the stationary phase and what makes it a good choice for this experiment? 

What type of molecules will interact well with this type of stationary phase? 

2. Look up the chemical structures, molar mass, density and boiling points of dibutyl 

phthalate (DP), and bis(2-ethyl hexyl) adipate (EHA) 

3. Using the provided dilutions (25L of neat liquid diluted to 25mL in cyclohexane), 

calculate the concentrations of the stock solutions (nominal 1000ppm). Then devise 

a dilution scheme to prepare a set of DP standards in the range 0.5-10ppm in 

cyclohexane using EHA as the internal standard (2ppm) 

4. Lookup the retention indices of DP and EHA on the stationary phase used here 

(http://webbook.nist.gov/chemistry/) and show equation that will be used to 

calculate the retention index from data acquired in the lab. 

5. Lookup the mass spec of DP and EHA from the same website 

http://webbook.nist.gov/chemistry/) 

http://webbook.nist.gov/chemistry/)
http://webbook.nist.gov/chemistry/)
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Safety & Disposal 

Chemicals used in this laboratory should be disposed of in the organic waste container. 
Avoid contact with the instrument when working with the GC as the injector, detector, 
oven, and column are hot and will cause burns. 

Procedure 

In this lab, you will use gas chromatography coupled to mass spectrometry to identify 
and quantify select plasiticizers in a given sample. 
 
Sample Preparation  

 The following three stock standard solutions are provided: (a) C7-C30 saturated 

alkanes standard in hexanes (sigma Aldrich catalog # 49452-U, 1000g/mL), (b) 

dibutyl phthalate (DP, 25L diluted to 25mL in cyclohexane), (c) bis-(2-ethyl 

hexyl) adipate (EHA, 25L diluted to 25mL in cyclohexane). Use the molar mass 

and density values of these compounds to determine the concentration of the 

provided stock solutions (these are nominally 1000ppm solutions but you need 

to determine the exact concentrations). 

 Devise a dilution scheme to prepare 5 standards which contain nominally 0.5-

10ppm of DBP and a fixed 2ppm concentration of EHA. The EHA will be used as 

the internal standard. (provided unknown will have 2ppm internal standard) 

 A diluted solution of C7-C30 saturated alkanes (300L diluted to 10mL in 
cyclohexane) ready for injection will be provided 

 A solution which contains an extract of a shredded plastic in cyclohexane will be 

provided. The extract is prepared by taking a weighed sample (nominal 10g) of a 

shredded plastic bottle (tonic water) that has been soaking in 100mL 

dichloromethane for over 48 hours, filtering, rotovaping and re-dissolving in a 

small volume of cyclohexane (will refer to this solution as the ‘unknown’ and the 

exact mass of plastic bottle and volume of cyclohexane used will be provided). In 

the absence of a sample with a significant content of a plasticizer, a prepared 

unknown solution will be provided. 

Instrument setup:  

 The tuning and calibration of the mass analyzer is preformed once a week by the 

TA. This is achieved using decafluorotriphenylphosphine and p-

bromofluorobenzene standards (the vial containing the standards is already 

inside the instrument, just need to run the autotune and save the file as 

atune.u). 

 Set the GC-MS to utilize the following parameters: (when injection the plasitizer 

sample, increase the final temperature hold to 6min.) 
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1µL injection Injector Temperature 
250°C 

Splitless injection with splitless flow 198 
mL/min @0.75min 

Detector 
Temperature 300°C 

Column temperature: 50 oC for 1min Hold 
then ramp to 280 @30 oC/min. no temp hold 
ramp to 300 oC @ 15 oC/min. hold for 1 min 

Column Flow Rate 
1mL/min 

Solvent delay 5min  MS Source 230 oC 
MS Quad 150 oC 

Aux-2 Temp 280 oC 

 

 Open the mass spec parameters by selecting the quadrupole icon and selecting 

the edit scan option. Enter a 5 min solvent delay, that the scan range is 50-550 

m/z, and the atune.u file is selected. It is very important NOT to bypass the 

solvent delay. 

Analysis: 
Identification of compounds using retention indices. 
1. Make sure to select the scan mode in the mass spec parameters window 

2. Perform one 1L injection of the diluted alkanes mixture solution. Your TA will 

show you how to inject 1L sample using a 10L syringe. 

3. Perform 1L injection of the standard which contains the nominal 3-4ppm DBP 

(and 3-4ppm of the internal standard EHA) 

4. Perform a 1L injection of the prepared unknown solution. Compare area under 

the curves for the DP peaks in this step and in step 3 to make any final 

adjustments to the standard concentrations. 

5. After analysis open the total ion chromatograms (TIC) in the mass spec data 

analysis and determine the elution time for each peak (you can start looking at 

completed data while another run is in progress). You will later use this data to 

calculate the retention indices of DBP and EHA– (you can compare your 

retention indices to values listed in the NIST webbook at 

http://webbook.nist.gov). 

6. The mass spectrum can be seen by right click and dragging around a peak in the 

TIC. Once you see that your mass spec data is what you anticipated it to be, 

proceed to the quantitative analysis and you can export your TIC data during 

your wait times. 

7. Export the TIC and the mass spectra to .csv file. The .csv files contain a list of 

identified mass peaks and their total abundances. Label the peaks in a 

meaningful fashion so that you can remember them later. 

8. For each peak identified from the extract sample, right click and drag a box 

around the peak to obtain the averages mass spectrum of the peak. Compare 
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the mass spectra and the retention indices to the values determined from the 

standards. 

9. Open each .csv file in Excel and convert the total abundances to relative 

abundances on a scale of 0-100 (the most abundant peak should have a value of 

100 and others should have relatively less). 

10. Go to http://www.massbank.jp/QuickSearch.html and perform a peak search on 

your generated peak list for each peak versus the EI database for MS data (select 

EI and only the MS checkboxes). Determine what you think each peak is based 

on the mass spectra. The NIST webbook link also provides mass spectra to 

compare to. 

Quantitative analysis of plasticizers in in selective ion monitoring (SIM) mode  
11. Make sure to select SIM mode in the mass spectrometer parameters window 

and select the m/z values to monitor (typically the following peaks should be 

present in your mass spectra and can be followed: 129, 147 and 241 (EHA), 149 

and 223 (DBP) 

12. Inject 1L each of standard 

13. Inject 1L unknown 

14. Record the areas under the peaks for DBP and EHA. 

15. Perform least square analysis (areas vs concentrations) to find the best fit 

calibration curve and calculate the concentration of plasticizer(s) in the diluted 

unknown (use areas under the curve and method of internal calibration, dibutyl 

adipate is the internal standard). If a sample of plastic extract is analyzed, use 

dilution volumes and mass of shredded soda bottle to back calculate the w/w 

ppm of plasticizers in the soda bottle.  

16. Calculate the detection limit. 

Post Lab 

Submit a full lab report with the usual sections, Abstract, Introduction, Experimental, 
Results, Discussion, and Conclusion. include all your TIC, SIM and mass spec results 
(representative total ion chromatograms, and mass spectra and table of areas under the 
curves. Also include chromatographic retention indices calculations. Identify DBA,DBP, 
EHA, EHP based on the mass spectra and based on the chromatographic retention and 
retention indices. 
Use RLS macro to identify any outliers before performing least square analysis (use 
straight line with internal standard, i.e. y-axis is the ratio of the area of the analyte/area 
internal standard), use your calibration curve to calculate the amount of bis-(2-ethyl 
hexyl adipate) per g of plastic and report errors and give significant figures according to 
the 2/15 rules. Evaluate the results (retention index and concentration) and compare to 
expected value (always reference) 
Determine the limit of detection.  
Answer the following questions as part of your discussion: 

http://www.massbank.jp/QuickSearch.html
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Why is it important to use calibration with internal standard?  
Why is the solvent delay used? 
Why is it better to measure areas under the curve and perform quantitative analysis 
from SIM mode rather than scan mode (TIC)?  
 
 
References: 
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Computer tutorials 

Tutorial 1. Random distributions 
 
If you repeat a measurement you seldom get exactly the same number twice. In the 
mathematical sense what you measure is not a numerical variable, but a stochastic one.  
That means that there is a random component to the measurement.  
Random variables are distributed over many possible outcomes and these distributions 
can have many different shapes. 
Open a new spreadsheet. 

1. Type in A1:  =Rand()    
2. Put the cursor on the right hand bottom corner of A1 until turns into a + Then 

drag this + to the right to copy the contents of A1 to B1.  
3. While the range A1:B1 is selected put the cursor on the bottom right corner of 

B1 and now drag it down to fill all the way down to row 512. This will fill the 
range A1:B512 with random numbers 

4. Now activate A512. Hold down the Shift key (that selects things). Now press 
RightArrow once, then End then UpArrow (note how you can quickly to the top 
or bottom of a range using End) 

5. The range A1:B512 should be selected now and you can go to Insert to make a 
chart of the range. Make a scatter-plot with only markers (no lines). Stretch it a 
bit until it looks more or less like a square. 

6. Press the F9 button a few times to recalculate the random numbers. As you see 
they fill a square between x=0-1 and y=0-1 homogeneously. This is a uniform 
distribution. 

7. Now activate A1 and change the formula to =normsinv(rand()).  
8. Activate A1 again and use the drag the + trick to copy the contents to B1. 
9. Select A1:B1 and double click on the + symbol that appears on the bottom right 

of the range when you put the cursor on it. This should fill the new formula over 
the entire range A1:B512. 

10. What happens to the chart? Press F9 a couple of times.  The formula 
=normsinv(rand())  represents the inverse of the cumulative integral F over a 
normal distribution. As probability integrates to unity this function F increases 
from zero at x=negative infinity to one at x=positive infinity.   If you pick a 
uniform random number (=RAND()) and read back on this function (i.e. use its 
inverse) you get a random number of a normal distribution. 
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11. Excel has more inverse cumulative functions that can be used to generate 

random numbers of various distributions from the uniform ones that RAND() 
produces. 

12. Goto B1. Hold down Shift press End and ArrowDown. Now press Ctrl+x to cut. 
Press Ctrl+G and type in the address A513. This will take you to this cell (useful 
for big spreadsheets!). Now press Ctrl+V to paste. We now have 1000 replicate 
numbers with a normal distribution N(μ,σ2)=N(0,1). 

13. A good way to navigate back is: press Ctrl+Home 
14. Type in D1 = average(A1:A1024). Type in E1 =stdev(A1:A1024). These values 

should be close to (but not exactly) 0 and 1, because they are (Least Squares) 
estimates for μ=0 and σ=1, the values for the standard normal distribution N(μ, σ 

2).=N(0,1). 
15. Type in F1 =E1/sqrt(1024). This is the standard error that indicates how good the 

estimate for μ is. Press F9 a couple of times and examine the values in D1 (the 
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sample average) and G1 (the standard error of this average). The value in D1 
should not differ from zero by much more than F1. 

16. There are other ways of estimating μ and σ. Type in D2 =median(A1:A1024) to 
estimate μ. 

17. Type the following array function in E2: =median(abs(a1:a1024-$d$2)). Caution: 
you need to use Ctrl+Shift+Enter to activate array functions.   

18. Excel hint: The dollar signs in the formula mean that the row and column 
reference is made absolute, i.e. upon copying into another cell they remain the 
same. There is an easy way to modify references: type in D4: =a123 and while 
the cursor is still behind what you have typed in the cell press the F4 button a 
few times. Delete the contents of D4 when you are done.) 

19. The two values in D2 and E2 are robust estimates for μ and σ: the sample 
median and the median absolute deviation (mad). Use F9 to study their 
behavior. You may see that the mad is too small. Edit its formula to 

20. E2 =median(abs(a1:a1024)-$d$2)*1.483  and use Ctrl+Shift+Enter  to activate the 
array function again. 

21. A good habit is to label your numbers, otherwise you do not know what they 
mean anymore: Type in C1: Least Squares; in C2: Robust; in D3: Mean; in E3: 
Standard deviation; in F3: Standard error 

22. Put the cursor on the border line between the header cells that say C and D. A 
symbol appears that looks like <-|-> Then double click. This should adjust the 
width of the column. 

23. Now you will see that the Least Squares estimates for both μ and σ are close to 
the robust ones and close to zero and one. 

24. Change the contents of A1 to 3000 and A2 to -100000.The values represent 
outliers. 

25. What happens to the Least Squares estimates? And the robust ones? 
26. Undo the changes in A1 and A2 (Use Ctrl+Z twice) 
27. The random function is ‘alive’ in that it gets recalculated anytime you change the 

spreadsheet. This can slow down a lot of calculations, if you want to use the 
numbers for some purpose. Let’s fix (freeze) one set of numbers. Select the 
whole A1:A1024 range (e.g. use the Shift, End and Arrow keys). Now press Ctrl+C 
to copy, right click and go to Paste Special, then opt for Values. Now the 
formulas are replaces by just numbers. 

28. Let’s create a suitable bin range to make a histogram. The bins are boxes 
(intervals) into which you sort your data. Then you count how many points are in 
each box and represent that in a bar graph. Choosing your bin ranges can be a bit 
tricky. Let’s first determine the largest and smallest values in our set. 

29. Type in D5: =max(A1:A1024)  and in E: =min(A1:A1024). The values should be 
something like: 3.54837 and -3.123 or so. So we need boxes between say -3.5 
and +3.5 and decide on a box size. If we make that 0.2 we’ll get (3.5-(-3.5))/0.2 is 
35 boxes. That should work fine for 1024 points 

30. Type in D7: -3.5 and in D8: -3.3.  Now select D7:D8 and put the cursor on the + 
corner and drag it down until you reach the value +3.5. 
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31. Go to Data on the ribbon (in Excel 2007) or the tool bar (in earlier versions). If 
the data analysis add-in is loaded there will be a data analysis option. Click it and 
opt for histogram. On the popup define the input data as A1:A1024 and the bin 
range as the one you just made. There is a button with a red dot in it that allows 
you to select the range by painting with the mouse, but you can also type in the 
range. 

32. (If the analysis pack is not loaded follow the instructions in the Excel Appendix all 
the way at the end of this manuscript) 

33. Opt for chart output at the bottom and go  (OK button). 
34. Do you get a Gaussian distribution? 
35.  Select the data in A1:A1024, copy them (Ctrl+c) and paste them in a new sheet 

(Sheet 2). Use paste special “Paste as Values” to make these numbers rather 
than the result of a function call. 

36. While they are still selected go to the Data option of the ribbon or toolbar and 
use the sort option to sort your data by size (A->Z will do). 

37. In B1 type =row() and double click the + of the right hand corner to copy the 
formula down to b1024. 

38. As you see this function simply numbers the cell by their row (there is also a 
COLUMN() one). Change the function in B1 to =ROW()/1024 and double click the 
+ to fill. We now have a fraction (essentially a percentile apart from a factor of 
100). 

39.  Now select A1:B1024 and make chart with only straight line segments. The 
easiest way to do that is as follows. In Excel 2007 you go under Insert on the 
ribbon, click the Scatter icon in the chart group and then click the bottom icon 
that shows straight line segments rather than markers or both. There are also 
two icons that produce rounded lines (splines). Never use those for scientific 
data: the splines mess up your data in uncontrollable ways. In earlier versions of 
Excel there is a chart wizard icon that leads you to much the same choices. 

40. By sorting your numbers, you get what is known as the order statistics of your 
‘measured’ data.  Plotting the order statistics give you an idea (estimate) of the 
cumulative distribution function of the data.  

41. Let’s check that! Type in C1: =normdist(A1,0,1,1). This gives you a Gaussian 
function with mean zero and standard deviation unity. Double click on the + at 
the right hand bottom of C1 to fill the formula down to the bottom. Now click on 
the graph. A blue box appears around the data in the B column. It should have 
handle at the bottom right corner and in newer versions also at the top right 
corner. Use that to drag and include the ‘theoretical’ values in the C column into 
the graph. To compare these values to the random values in the A column copy 
columns A, B and C and use paste “special” (as values) to another location (e.g. E, 
F and G). Then sort the values in column G (those from the Gaussian function). 
The others should already be sorted, but you could also simply sort all three 
columns to make sure. Now plot all three columns, meaning you are plotting B 
vs. A and C vs. A to show that the normalized distribution of the random 
numbers is equivalent to a Gaussian. 
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42. The two curves should be very similar but not identical. In fact, it is possible to 
subtract the two and take the largest deviation. There are tables that will tell you 
if that deviation can still occur just by chance or that the curve really does not fit. 
Such a test is called the Kolmogorov-Smirnov test. Unfortunately, Excel does not 
have a probability table for this built in (as it does for the t-test). Real statistics 
software like SAS etc. does have that. Such a test allows you to see if your data 
are actually normally distributed or not. 

43. Go to a new sheet (Sheet 3) now and fill two columns, say A1:B512 with normally 
distributed numbers using =NORMSINV(RAND()) and make a chart as before. 

44. In D1 type =correl(a1:a512,b1:b512). This calculates the correlation between the 
values in the A and the B column. Pressing the F9 key will show you that the 
correlation is quite small. In fact it should be (close to) zero. 

45. Now replace the formula in B1 by: =$C$1*A1+ NORMSINV(RAND()) and use the + 
trick to distribute the formula over the whole B1:B512 column. Delete whatever 
is in C1. As long as C1 is empty it should not make much of a difference, but start 
making the value of C1 larger: first 1 then 5,10 and 100. What happens to the 
graph, what happens to the correlation? 

46. Now make the formula into =A1^2+ NORMSINV(RAND())^2. Why is the 
correlation close to zero now? Also try =A1* NORMSINV(RAND()). Again there 
should be hardly any correlation. Does that also mean that there is no 
relationship between the two rows? 

47. What is the correlation between A and B for these data and why? (Make chart!) 
 

1 0 

-0.5 0.866 

-0.5 -0.866 

Tutorial 1 Quiz 

 
Let's understand the relationship between the binomial distribution function and the 
Gaussian. 
 
1. Using a new Excel document construct an array from 0 to 10 in A1:A11 
Type 0 in A1 and then A2:=A1+1.  Copy A2, select A2 to A11 and paste the formula in the 
cells to complete the array. 
 
2. Calculate the binomial distribution in cells B1 to B11 for each point using the syntax 
FACT(10) as the factorial of 10. 
 
The formula you need is 

𝐵𝑛 =
10!

(10 − 𝑛)! 𝑛!
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Construct this formula in B1, copy B1 and then select B1 to B11 and paste the formula 
into the entire array.   
 
3. You can plot this by selecting A1:B11 and clicking the ScatterPlot under Chart 
 
4. What does the function look like?  When is the area underneath the curve you have 
created?  You may use the SUM function to calculate the sum of the points B1 to B11.  
In B12 type B12:=SUM(B1:B11).  What value did you find? Can you see any relationship 
between this value a power of 2n? 
 
5. Let's create a normalized function. In C1 type C1:=B1/$B$12 
The $B$12 takes the fixed value in B12, which is the sum (i.e. in this case the area 
underneath the curve. This is the area since the spacing between each point on the x 

axis x = 1.  Copy C1 and paste it into C1 to C11.  What is the sum of C1 to C11? 
 
6. Repeat these steps for an array of 60 points.  Now let's compare the binomial 
function with a Gaussian. The Gaussian you need has the form. 
 

𝐺𝑛 =
1

√2𝜋𝜎
exp {−

(𝐹1 − 30)2

2𝜎2
} 

 
Assuming that you have an array from 0 to 60 in F1 to F60 then the Gaussian function 
can be constructed using the above formula.  Plot the normalized binomial distribution 
for 0 to 60 and the above Gaussian on the same plot.  But, what value should we use for 
𝜎? Here 𝜎 is a constant that determines the width of the Gaussian. By trial and error 
match the Gaussian to the binomial distribution. Hint: Try 𝜎 = 1 and then 𝜎 = 10. Does it 
look reasonable? What value of 𝜎 looks the best. Final question: Is the above Gaussian 
normalized? 
 
7. What is the normalization factor for the binomial distribution function?  
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Tutorial 2. Calibration lines 
 
Calibration is a very important procedure because it is the standard way to remove 
systematic errors from measured data.  It is also the only way to make sure that your 
scale of units corresponds to everybody else’s. The basic idea is very simple: 

1. Take a sample with known properties (a standard) 
2. Measure it with your instrument 
3. If your measurement gives a wrong value, correct it 

Of course you are not interested in one value but in a whole scale within the dynamic 
range of your instrument and so in general we have to use a series of standards and 
correct the whole scale. This is typically done using simple linear regression although 
there are far more elaborate schemes possible. In this lab we will explore some of the 
properties of calibration curves 

Instructions 

 

 Open up the workbook trumpets.xls. Make sure macros are enabled. Microsoft 
tends to disable everything. 

 Sheet 1 contains two buttons and a two column range of data points that 
represent a series of measured standards. 

 Select the range and click the trumpet button. The button activates a macro that 
calculates a simple linear regression using the Linest function.  The output of this 
procedure is summarized in the block in the J and K column. At the top of this 
block e.g. you will find the values for the slope and the intercept of the 
calibration line. 

 The formulas underneath the heading:  fit, Conf95%+, Conf95%-, Pred95%+, 
Pred95%-  should be selected. Put the cursor on the bottom right corner of that 
range until it changes into a + and then double click. This should fill down to the 
last calibration point. 

 Now select the entire data block including the empty cell above the first data 
point and the headers on the first row. Make a chart: a scatter plot with only 
markers 

 While the chart is active, click the decent trumpets button. 

 There is a green straight line. This is the calibration line.  It is what you use to 
correct you measurement with.  

 Typically what is on the horizontal (X) axis here are the calibration values (the 
‘right’ ones). Vertically you have the measurement (Y). The dimensions are not 
necessarily the same.  
 
Questions: 
 

1. Suppose we are calibrating a UV/VIS spectrophotometer and measure 
absorbance at a wavelength of 400 nm. We want to know if an accused 
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person has actually put a red poison in someone’s drink. We have made 
up a number of solutions of that poison with known molarity and 
measured them. What are the units on the vertical and on the horizontal 
scale? What does Y represent? 

2. The calibration line can be written as Ycal = bintercept + mslope.Xstandard. What 
are the units for the intercept and the slope in this case? 

3. Inspect the formulas in E11, F11, G11 and H11. Activate each cell and 
then click behind the formula that appears in the formula bar above the 
sheet. Write out the formulas in mathematical format in terms of the 
quantities given in the statistics table. Compare to the statistics handout 
in the CH452 manual. What is the difference between the formula for the 
prediction and the confidence hyperbolas?   

 

 Notice that if I measure an unknown sample, what I do not know is the poison 
concentration Xunknown. All I can do is measure its Y absorbance value. To arrive at 
a concentration value I have to read back, i.e. we need to invert:  (Yunknown - 
bintercept )/ mslope = Xcalibrated 
 

   
 

 Suppose Yunknown is measured to be 4.342. Use the slope and intercept values in 
the Linest block to calculate Xcalibrated. (The intercept is on the top right of the 
range; the slope is on the left). 
 
Of course the above totally ignores the fact that both in the calibration 
measurement and in the measurement of the unknown there are inevitable 
uncertainties (read: random errors).  This is why I have added the red and blue 
‘trumpets’. They may look like straight lines but they are really hyperbolas.  
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 The calibration set contains a blank measurement, i.e. one where X=0. Let’s 
make a gross error there. Change its measured value to 10. As you see that really 
screws up things: the calibration line no longer passes through the data points 
but the hyperbolas become much clearer. Change the value at X=0 back (Ctrl+z). 

 

The two trumpets 

 
There are two sets of hyperbolas: 
 

1. The area between the inner blue curves, known as the confidence limits 
(of the line) represents the zone within which you would expect any new 
calibration line to appear, if you measured the same standards again. 

2. The area enclosed between the outer red curves, known as the 
prediction limits (around the line) represent the zone within which you 
can say any new data point will appear  and be right about it 95% of the 
time.  

 
So, whatever measurement we do we expect it to come within the outer trumpets, as 
long as the data quality and instrument settings etc. do not change. Therefore, we can 
use the outer curves to find the error in the calibrated X value of an unknown by a read 
back procedure much like what we did above: 

 
 
We know that the point on the Y scale must have come from between the outer 
trumpet, so if we invert the hyperbolas we should get the lower and upper 95% 
confidence limits of the calibrated value we found above.  Caution: the nomenclature is 
very confusing: you use the prediction limits for a point (around the line) to find the 
confidence limits (of the point). 
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You may wonder what the inner limits mean: they represent the systematic component 
or the calibration error.  If we were to replicate our unknown measurement, we can 
improve our uncertainty by averaging and thus reduce the width of our confidence 
zone, but the calibration error would remain the same as long as we keep using the 
same calibration line. Thus the inner blue part does not average out no matter how 
many replicates we measure.  
 
Question: 
 
You may notice that the band between the trumpets is not equally narrow everywhere. 
Where would you get the best results?  What happens when you move to higher or 
lower concentration values? What happens to the systematic component? 
 
Unfortunately the exact inversion of a hyperbola leads to horrible algebra, but in a 
spreadsheet you can do it graphically or by preparing a look up table 
 

 Type in O11: 0;  type in O12: 0.001 

 Select O11:O12 and put the cursor on the corner until + appears 

 Drag the + down to O1011. This should fill O11:O1011 with numbers increasing 
in steps of 0.001 

 Go back to where the calibration data are and select the formulas in the first row 
beneath the heading :  fit, Conf95%+,Conf95%-,Pred95%+.Pred95%-  (starting 
under fit). Hit Ctrl+c to copy 

 Go to Q11 and paste (Note: it is important to skip a column for consistency in the 
formula) 

 Use the + double click trick to copy the formulas down to the bottom of the 
region. 

 Select O11:U1011 and make a scatter plot with only markers 

 Use the ‘’Decent trumpet” button to clean it up 
 
We now have values for the calibration line and the trumpets that are not limited to 
where we took our calibration standards. 
 

 Select O11:O1011  (Go to O11; hold down Shift; press End; press Arrow-
Down)  
Or on newer version use Shift; Ctrl; Pgdn then copy (Ctrl+c) 

 Goto V11 and paste 
 
We are now ready to look up values in order to determine the width of the distribution 
in the x-direction. See the figure above called “Inverting the hyperbolas”. What you are 
doing is graphically trying to find the place where a certain value of y cuts across the line 
and across the outer trumpets.  For example, suppose we wish to know the inverted 
values for a measured value of 0.44. In other words, what is the predicted concentration 
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(if we assume that 0.44 is absorbance)? And what is the 95% prediction error? For that 
we will need to look at where the number 0.44 appears in the table in three places.  
Problem: Determine the concentration (x-value) when y = 0.44 and determine the 
prediction error. 
 
You can also use a lookup function to find the values. 
 

 Type in W7 = 0.44 
 
We can use a function called Vlookup. You give it the value you want it to look up, then 
a range (table) in the first column of which it looks up your number and then the column 
with the values you want returned: 

 type in X7: =VLOOKUP(w7, $Q$11:$V$1011, 6) 

 type in Y7: =VLOOKUP(w7, $T$8:$V$1011, 3) 

 type in Z7: =VLOOKUP(w7, $U$8:$V$1011, 2) 
You can see that the values are close to those you found by inspection. However, the 
lookup function cannot see things such as the fact that the value of x is halfway between 
to values of y-calc.  
 
We now have the calibrated values in the X column and the lower and the higher 95% 
confidence limits in Y and Z.  Unfortunately there is a bit of a problem. Use the AA and 
AB columns to calculate the distance δ+ and δ- from the calibrated value Xcalibraed to the 
upper and lower limits. (=X4-Y4 and =Z4-X4). As you see the error margins δ+ and δ- are 
not quite the same. This implies that the statistical distribution around Xcalibrated is no 
longer strictly Gaussian! This is an inconvenient truth that is conveniently ignored in 
science. Just remember: almost all data in science are obtained through calibration, so 
that this would mean that scientific data is generally not normally distributed. 
Fortunately the deviation from symmetrical is pretty small, particularly if the trumpets 
are narrow and typically people use a symmetrical approximation formula that can be 
computed from the statistics in the statistics block: 
 
 

𝐴𝑝𝑝𝑟𝑜𝑥. 𝑠𝑡𝑑. 𝑒𝑟𝑟𝑜𝑟 =
𝑅𝑀𝑆𝐸

|𝑠𝑙𝑜𝑝𝑒|
√1 +

𝑁𝑥2 + ∑ 𝑥𝑖
2

𝑖 − 2𝑥 ∑ 𝑥𝑖𝑖

𝐷𝐷
 

Where 

𝐷𝐷 = 𝑁 ∑ 𝑥𝑖
2

𝑖

− (∑ 𝑥𝑖

𝑖

)

2

 

 
 
δ+ = δ-= t-value*approximate standard error.  
 

𝑥 = 𝑋𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑   𝑎𝑛𝑑 𝑁 = 𝑑𝑓 + 2 
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 Use the statistics in the regression block to compute these error margins 
Notice that we use the Student t value in this approximation formula to multiply an 
approximate estimate for the standard error of Xcalibrated (the rest of the formula), 
happily assuming we can treat it as normally distributed. We then can report the result 
either as  
: Xcalibrated(approx. st. error)  in 2/15 format 
Or, and the ISO 9000 laws often prescribe that it must be given as: 
: 95% confidence limits are: Xcalibrated± δ.   
Whether you get 95% limits or say 99% depends on what t-value you use. That is easy to 
change in the cell labeled as t-value: change =TINV(0.05,xxx) into =TINV(0.01,xxx) and 
watch what happens.  
 

The limit of detection 

 
Examine what the intersection point of the upper prediction hyperbola is with the Y-
axis. This value has a special meaning. It is called the limit of detection (LOD). Note that 
you can estimate it using the 95% confidence limit as shown using the graph below. 
 

 
 
When you measure such an absorbance value you cannot really say much about your 
sample. The confidence limits now contain X=0. That means they also contain X=0.1 of 
0.001 or 0.0001 or 10-10. That is to say that: 

1. you do not even know if your poisonous compound is actually there 
2. if it is there, you do not even know at what scale it is there 
3. all you know it is not more than the Limit of Detection 
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This puts you in the position of a jury trying to decide whether an accused person should 
be condemned or not on insufficient evidence. They can make two different kinds of 
errors: they can send an innocent man to jail of they can let a crook go. In either case 
there is a crook on the loose! 
 
The limit of detection obviously depends on the confidence level I take. If I opt for 99% 
the bands will be broader. So what do I take? There is a trade off here. If I am pickier 
and insist upon 99% or 99.9% confidence my chances of sending an innocent man to jail 
will diminish (LOD will be higher), but I’ll let more crooks go. The only way to diminish 
both types of error is to get better data. 
 
Question 
 
Let’s use the data in this worksheet to determine the limit of detection. Repeat the 
steps above used for the estimate of the confidence zone, but use a spacing of 0.001 
(instead of 0.01). To determine the LOD you need to determine the value of the upper 
outer trumpet when x = 0.0. This can easily be seen from the table. Once you have 
found this value now you need to find the value of x when the lower outer trumpet has 
this same value. Using this approach estimate the LOD. 

Standard addition 

 
Go to Sheet 2 of the workbook. It contains a number of measurements of the atomic 
absorption of calcium in milk. A known amount of calcium solution was added to the 
sample, a method called standard addition.  The concentration given is the added 
concentration. In addition each sample contains a contribution from the sample itself. 
Select the data range and use the two buttons to make a calibration graph with decent 
error trumpets. 
To find the concentration of the unknown you need to back extrapolate the calibration 
line to where it intersects with the concentration (x-) axis, so: 
 

𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑠𝑙𝑜𝑝𝑒 𝑥 = 0 
 

𝑥 = −
𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

𝑠𝑙𝑜𝑝𝑒
 

   
   
Calculate this value of x. Now to find the errors in x (i.e. the errors along x axis) we will 
need to extend the trumpets down to that value and even past it until both trumpets 
cross the x-axis. To do this generate a column with x values in small steps around it. You 
will not necessarily know how far to go so just try some values.  Then copy the functions 
for the fit line and the two inner confidence limit trumpets and use them to calculate 
their values and make a graph. The idea is to find the points where the inner trumpets 
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cross the horizontal axis graphically (i.e. where they cross the x-axis) to find the 95% 
confidence limits of the concentration of our unknown sample. 
The resulting graph will look something like this. 

 
Notice the blue line (fit) and the trumpets (red-brown and green) all cross the x-axis. 
Now you can read the errors in the estimated value for standard addition by 
determining where the trumpets cross the x-axis.  
 
δ+ = δ-= t-value*approximate standard error.  
 
There is also a symmetrical approximation formula you can use. 

𝐴𝑝𝑝𝑟𝑜𝑥. 𝑠𝑡𝑑. 𝑒𝑟𝑟𝑜𝑟 =
𝑅𝑀𝑆𝐸

|𝑠𝑙𝑜𝑝𝑒|
√

𝑁𝑥2 + ∑ 𝑥𝑖
2

𝑖 − 2𝑥 ∑ 𝑥𝑖𝑖

𝐷𝐷
 

Where 

𝐷𝐷 = 𝑁 ∑ 𝑥𝑖
2

𝑖

− (∑ 𝑥𝑖

𝑖

)

2

 

 
Use it to check your results against the graphical method.  All the statistics are already in 
your sheet. 
 
Question: why would we use the inner trumpets in this case? 
 
Question:  Why do you need the value of the lower inner trumpet at x=0 to be positive? 
 
Question: Why is it undesirable if the slope of the line is small? 
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Tutorial 2 Homework 

Part 1. multiple choice questions. 
 
1. Ordinary calibration. You may notice that the band between the trumpets is not 
equally narrow everywhere. You get the best result around the center of gravity of your 
calibration points. 
Question: What happens when you move to higher or lower concentration values, i.e. 
away from the center? 
 
A. The resulting uncertainty gets larger because the vertical distance between the two 
outer trumpets gets larger 
 
B. The resulting uncertainty gets smaller because the horizontal distance between the 
two outer trumpets gets larger 
 
C. The resulting uncertainty gets larger because the vertical distance between the two 
inner trumpets gets larger 
 
D. The resulting uncertainty gets larger because the horizontal distance between the 
two outer trumpets gets larger 
 
 
2. Ordinary calibration. You may notice that the band between the trumpets is not 
equally narrow everywhere. You get the best result around the center of gravity of your 
calibration points. 
Question: What happens to the systematic component, i.e. the calibration error when 
you are far away from the center? 
 
A. The widening of the outer trumpets indicates that the calibration error becomes less 
significant 
 
B. The systematic component, indicated by the inner trumpets becomes the dominant 
contribution so that the calibration error dominates any random contribution 
 
C. The outer trumpets become wider but this is the result of random errors in the 
measurement of the unknown 
 
D. The systematic component of the error is constant for all values of the calibration line 
 
 
3. Standard addition. Question: What should we use to find the confidence limits of the 
final measurement? 
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A. Because we measure the same unknown multiple times we cannot use either of the 
trumpets because we need to construct an outer trumpet for more than one replicate 
 
B. We are measuring the same one unknown sample over and over, we should use the 
outer trumpets 
 
C. We are using all the data at once to find the intercept of the calibration line with the 
Xaxis. The inner trumpets determines where we expect the line to be 
 
D. We should use the standard errors of the slope and the intercept and do error 
propagation 
 
4. One requirement for Least Squares regression to be successful is that the matrix (XTX) 
has an inverse. This depends on: 
 
A. The software you are using 
 
B. The quality of the data set 
 
C. Whether or not the data are homoschedastic 
 
D. The design of the data set, i.e. your choice of independent variables 
 
E. Whether or not the data set contains outliers 
 
F. Whether the equipment is properly calibrated or not 
 

5. In matrix notation a set of data points can be written as Y = X.β + ε 

However this equation reduces to Y = X.β 
 
A. when the parameters ε are chosen such that the sum of the squared residuals is 
minimal 
 
B. when the parameters are chosen such that the sum of residuals is minimal 
 
C. when the calibration is applied 
 
D. when the parameters β are chosen such that the sum of the squared residuals is 
minimal 
 
E. when the parameters are chosen such that the squared residuals are minimal 
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6. In matrix notation a set of data points can be written as 

Y = X.β + ε 

The symbol ε 

 
A. Stands for the random error component; it is assumed to be normally distributed as 
N(0,σ2) 
 
B. Stands for the estimated parameters 
 
C. Stands for the bias due to the calibration error 
 
D. Stands for the random error component and can have any symmetrical distribution 
 
 
Answers 
 
 
1._______ 2. _______ 3. ________ 4. ______ 5. ______ 6. _______ 
 

Part 2. Numerical Analysis 

We will study the fundamentals of Ordinary Least Squares. Let's make some data.  

1. First generate an array of 0.0 to 0.5 in A1:A6 using the method used in the last 
homework. Type A1:=0.0 then A2:=A1+0.1.  The copy (crtl c) A2 and paste (crtl v) into 
the array A2 to A6.   
2. Then let's make a line with noise in B1 to B6.  
   Type B1:= -5 + 12*A1 + NORMSINV(RAND())*0.4 
    
Then copy B1 and paste it into B1 to B6. 

𝒚 = 𝑏𝒙 + 𝑎 
where b = 12 and a = -5. We have included a noise function with an amplitude of 0.4. 
 
3. The method for obtaining the slope an intercept is as follows. For a line, 
 

𝒚 = 𝛽𝒙 + 𝛼 
 
The vector y is the dependent variable while x is the independent variable. Here the x 
vector in A1:A6 and the y vector is B1:B6. 
The averages are 

�̅� =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1
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and 

�̅� =
1

𝑛
∑ 𝑦𝑖

𝑛

𝑖=1

 

You can obtain the averages using the function AVERAGE. In A7 type 
A7:=AVERAGE(A1:A6). You can copy A7 and paste it into B7 and you will also have the 
average for that array.  
 
4. The slope is calculated using the formula 
 

𝛽 =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑛

𝑖=1

∑ (𝑥𝑖 − �̅�)(𝑥𝑖 − �̅�)𝑛
𝑖=1

 

In C1 type 
C1:=(A1-$A$7)* (B1-$B$7) 
and in D1 type 
D1:=(A1-$A$7)* (A1-$A$7) 
Then copy these two cells and paste them into C1:C6 and D1:D6, respectively. 
Form the sum of each of these arrays. 
C7:=SUM(C1:C6) and D7:=SUM(D1:D7) 
Now, in E9 write "slope" in F9 type 
E9:=D7/C7 
 
5. The intercept is obtained from 
 

𝛼 = �̅� − 𝛽�̅� 
 
In E10 write "intercept" and in F10 type 
F10:=$B$7-F9*$A$7 
 
Keep in mind that this method is only one route to solve this problem.  We could think 
of this approach as “two equations and two unknowns”, where the unknowns are 𝛼 and 
𝛽. The matrix approach solves for 𝛼 and 𝛽 as a column vector with two elements. While 
it is not required you might try following the procedure in the lecture for using the 
matrix approach in Excel to obtain the values for 𝛼 and 𝛽. 
 
6. Once you have obtained 𝛼 and 𝛽, you can calculate the correlation coefficient R2. 
 

𝑅2 =
∑(𝑦�̂� − 𝑦𝑖)

2

∑(𝑦𝑖 − �̅�)2
= 1 −

∑(𝑦�̂� − �̅�)2

∑(𝑦𝑖 − �̅�)2
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Note that 𝒚�̂� are the calculated values from the values 𝜶 and 𝜷 that you obtained from 
the ordinary least squares decomposition and the 𝒚𝒊 are the original values obtained 
using a and b.  We have also written this as 𝒇𝒊, so 𝒇𝒊 = 𝒚�̂�. Explicitly this means that we 
can calculate  

 
𝑓𝑖 = 𝛼 + 𝛽𝑥𝑖 

 
And then use this calculated function to define three important quantities in the least 
squares approach. These are the sum of the squares of the residuals 
 

𝑆𝑆𝑟𝑒𝑠 = ∑(𝑓𝑖 − 𝑦𝑖)2 

 
The sum of squares of the regression line 
  

𝑆𝑆𝑟𝑒𝑔 = ∑(𝑓𝑖 − �̅�)2 

and the sum of square of the total 
 

𝑆𝑆𝑡𝑜𝑡 = ∑(𝑦𝑖 − �̅�)2 

Note that 
𝑆𝑆𝑡𝑜𝑡 = 𝑆𝑆𝑟𝑒𝑠 + 𝑆𝑟𝑒𝑔 

 
Note the difference is that 𝑓𝑖  is calculated and 𝑦𝑖represents the data. Using these 
definitions 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
=

𝑆𝑆𝑟𝑒𝑔

𝑆𝑆𝑡𝑜𝑡
 

 
You may calculate 𝑅2 using either of these approaches using the data. 

7. Plot the original line from A1:B6 using a scatter plot. The LINEST function (or click on 
trendline) to obtain a fit.  How does the fit obtained using LINEST compare with your fit. 

8. Calculate the 95% confidence limit for this line. Calulate the line again using a noise 
amplitude of 0.8 (instead of 0.4).  How does the 95% confidence limit change?
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Tutorial 3. Matrices and Complex Numbers 
 
Actually both matrices and complex numbers become a lot more interesting (and fun) in 
a spreadsheet than they are on a blackboard or in a math test. And yes they are quite 
useful in quantitative science. In future labs we will see some more applications and you 
may need them in your project phase. 

Rotation 

 

 Start a new sheet and put the following  data in A1:B5 

1 0 

2 0 

3 0 

4 0 

5 0 

 Type in C1: =COMPLEX(A1,B1)   (This creates a complex number  A1+B1.i) 

 Type in D1: =IMPRODUCT(C1,$G$1)  (Hint: Use F4 to put in the $ signs). This 
function multiplies two complex numbers. 

 Type in E1= IMREAL(D1). (Guess what this does?) 

 Type in F1= IMAGINARY(D1). (Guess what this does?) 

 Select C1:F1 and double click the bottom right corner of F1 to fill down to F5 

 Type in G1: =IMEXP(COMPLEX(0,H3)) (More about this in a minute..) 

 Type in H3: =PI()*I3 

 Type in I3: =0.25 

 Select A1:B5 and make a scatter plot  with only symbols 

 Select E1:F5 and make a scatter plot with only symbols 

 While the second chart is active, copy it using Ctrl+C 

 Activate the first chart and paste using Ctrl+V 

 Delete the second chart 

 In the first chart change the axis  range to -6 to +6 fixed values for both X and Y 
and stretch to make the graph look square. 

 Press Alt+F11. This takes you to the VBA IDE 

 On the left you should see all the VBAprojects currently open, including the 
workbook you are working in. Click that project to activate and go to the Insert 
menu. Insert a module 

 In the middle pane a new window should open. Type the following program in it 
Sub rotate() 
a = Range("I3").Value 
a = a + 0.1 
Range("I3").Value = a 
End Sub 
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 Either press Alt+F11 again or click on the small Excel icon top left to go back to 
your workbook 

 Click your chart to activate and right click. 

 On the popup assign the rotate module to the chart 

 Click on an arbitrary cell, then on the chart and again and again.  

Roots of one 

The above demonstration makes use of a set of complex numbers with very special 
properties. You could call them the nth roots of unity, because they are the (complex) 
solutions of the equation: 

                                                          xn=1 
There is always n such roots. These are known as the” roots of unity”, which is the 
keyword you should use if you want to read more about these numbers in Wikipedia.  
Question: What are these roots for n=2? For n=4? To answer this question we should 
introduce the unit circle of radius 1 in the complex plane. The complex plane has a real 
axis (x-axis) and an imaginary axis (y-axis). 
 
The absolute value or magnitude of the mth root: |xm| = √(xm*xm) of these numbers is 
always one and that means that in the complex plane they lie on the unit circle because 
the radius represents the magnitude |x|. In complex exponential notation the roots are 
easy to write: 

: xm =  exp2πi[m/n]   where m = 1,2,3,4, …n 
It is this function that we used to make things rotate in the demonstration above, 
because multiplying with such a number corresponds to a rotation in the complex plane. 
According to the Euler rule for complex exponentials,  
 

𝑒±𝑖𝑥 = cos(𝑥) ± 𝑖 sin (𝑥) 
 
the real part of our root-of-one is cos2π[m/n]  and the imaginary part sin2π[m/n].  
To find the roots we will also need the De Moivre formula: 
 

(cos(𝑥) ± 𝑖 sin(𝑥))𝑛 = cos(𝑛𝑥) ± 𝑖 sin (𝑛𝑥) 
 
Let’s have look at these numbers using an Excel spreadsheet. 

1. Go to a new sheet 
2. Type in A1: 0; type in A2: 1; 
3. Select the two cells, put the cursor on the bottom right corner of the selected 

range until it changes into a +. Then drag down to A15. (This should fill the range 
with the numbers m.) 

4. In B1 type: =A1*2*PI()/15;  (This gives 2π[m/n]  with n=15)  
5. In C1 type: =IMEXP(COMPLEX (0,B1)) (giving exp2πi[m/n]; COMPLEX(a,b) gives:  

a+b.i )  
6. In D1 type: =IMREAL(c1)  (The Re part cos2π[m/n]  ) 
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7. In E1 type: =IMAGINARY(c1) (The Im part sin2π[m/n]  ) 
8. Now select the range B1:E1, put the cursor on the bottom right corner of E until 

a + appears and double click 
9. The formulas should now have filled done to row 15. In the B column we have 

calculated 2π[m/n]. This value is also known as the phase angle. 
10.  In the C column we have exp2πi[m/n]   and in the D and E columns we have its 

real and imaginary parts    cos2π[m/n]  and  sin2π[m/n] 
11. Now select the range D1:E1 and make a scatter-plot with only markers, no lines. 

Provided you stretch the chart a little is should look like a perfect circle.  (Make it 
so!) 

12. In A17 type =CORREL(E1:E15,D1:D15) These are the roots of x15=1. Look at the 
angles between them. How big are those and why are they so regularly spaced? 
What is the meaning of the contents of A17? Are the numbers random? 

13. In C16 type =IMPRODUCT($C$3,C1). This calculates the product of the two 
complex roots in C1 and C3. Drag the contents down to C30 to fill. Select d15:e15 
and double click + to fill down to E30. Make a second graph of D15:E30.  

14. The graphs look identical but if you look at the numbers in rows 15 to 30 you’ll 
see there is a difference. (What?). Activate the second graph and press Ctrl+c  to 
copy, then click on the first graph and press Ctrl+V to paste. 

15. Change the formula in C16 to =IMPRODUCT(COMPLEX(0,1),C1) and double click 
the right bottom corner + to fill. 
The function complex(0,1) represents the complex number 0+1i = i. Was this 
number one of the original roots? What happens if you multiply by it? 
In next week’s lab we will see an important application of these numbers the 
Fourier Transform. 
 

Let’s do rotation in a different way by using a rotation matrix.   

 Go back to your first sheet  

 Type in H5: =cos(H3) 

 Type in I6: =cos(H3) 

 Type in I5: = -sin(H3) 

 Type in H6: =cos(H3) 

 Select the range E1:F1, type the array function: =MMULT(A1:B1,$H$5:$I$6) (hint: 
you can type =MMULT( and then use the mouse to select the A1:B1 range, then 
type a comma, then use the mouse to select the H5:I6 range, then use F4 to put 
in the $$ signs). Activate this array function with Ctrl+Shift+Enter 

 We have now multiplied our (x,y) coordinates with our rotation matrix. Use the 
bottom right + double click to copy the new function over all five rows 

 Click on the graph to see what happens 
As you see 2D rotations can be done both ways: complex or matrix. In 3D it gets 
more complicated. There are no 3D complex numbers, but there are 4D ones, known 
as quaternions and they do the trick in 3D. Most computer games use quaternions. 
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Euler matrices in 3D also exist but have a mathematical problem known as ‘gimbal 
lock’ which makes your program crash.   

 

Using Matrix Commands in Excel 

  

General Advice and Background 
 
Matrices are used in many practical problems. For example, when you produce a 
diagram, most of the time, matrices appear in the diagram. More importantly, many 
calculations are most easily performed by using matrices. In this class, we will learn to 
enter and to perform various operations of matrices in Excel. We will use these skills to 
some practical problems in the next class. It is important that you know the basic 
properties of matrices in order to deal with them in Excel. 
  

Entering and Naming Matrices 
 
Before entering the elements of any matrix, you should always enter the Matrix Name, 
such as P, Q, etc. You may also want to enter the Description of the matrix, like 
Coefficient Matrix, Product of P and Q, etc. 
Let 

 
 
To enter P, we can begin by entering the name in cell A1 and the elements in the block 
of cells A1:B2. To name the block of cells as matrix P, we do the following: 

(a) Highlight A1:B2 with the mouse. 

(b) Write the name of the matrix in the cell definition box. This is shown in the 

illustration below. The cell definition is in the red rectangle. In this case we can call the 

matrix EXAMPLE. We could have called it P or Q. However, some letters and even some 

combinations are reserved in Excel. Sometimes you will get errors if the name you 

choose conflicts.  If you suspect such an error just choose another name. 



123 
 

 

We can demonstrate the use of matrix commands in Excel using this matrix. In the 

figure below we have set up the matrix inversion. The command is MINVERSE() and the 

argument is the name of the matrix. Notice that Excel highlighted the matrix in blue 

because it recognized EXAMPLE as the name of the matrix (as we designated above). 

 

 The execute the command and invert the matrix we need to type <Shift><ctrl><Enter>. 
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This is shown below. We see the result is a different matrix.  

 

First we will name it EXINV to represent that it is the inverse of the matrix EXAMPLE. 

 

Next we will test this matrix to see if it really is the inverse matrix. We will use the 

matrix multiplication function to multiply the matrix EXAMPLE by its inverse. Below we 
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can see that we have set up the calculation and both matrices are highlighted, which 

means that Excel has recognized both of their names. 

 

Now we can execute the matrix multiplication by typing <Shift><ctrl><Enter>. 

 

It is gratifying to see that the product matrix is the identity matrix. Thus, the matrix 

EXINV really is the inverse matrix. This is not so difficult to check by hand for a 2 x 2 
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matrix. But, try doing it for a 6 x 6! In Excel it is easy using the same commands we have 

used here. 

We can also illustrate the matrix transpose function. 

 

To implement we type <Shift><ctrl><Enter>.
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In order to play around with the matrix operations, enter the two matrices above (P and 
Q). You can enter them anywhere you like. To keep things clear we should probably 
keep some spaces between them. So, for example we could enter the P matrix in A1:B2 
(as above) and then the Q matrix in A4:B5. Please do this and then use the information 
below to implement various matrix operations.  

 

Matrix Operations 

We need to know the following rules on matrix operations: 

P + Q or P - Q can be performed if P and Q are of the same size. 

The multiplication PQ can be performed if the number of columns in P is the same as 

the number of rows in Q. 

The transpose of P can always be performed. 

The determinant of P is defined only is P is a square matrix. 

The inverse of P is defined only if P is a square matrix with nonzero determinant. 

As the matrices P and Q are of the same size, we know P+Q can be performed. To do 

this in Excel, we use the following steps. 

(a) Enter P and Q (which have been done already). 

In the cells above those which will contain the answer we enter a description and 

the name of this answer. For example, we can enter sum of P and Q as the 

description, and enter RS as the name. 

(b) Use the mouse to highlight a 2 x 2 block of cells (as P +Q will be a 2 x 2 matrix) such 

as B9:C10 in which the answer is to be stored. 

(c) Enter the Excel function 

= P + Q 

followed by pressing <Shift><ctrl><Enter> 

(d) Name the new matrix RS as we did above for the example. 

Note: You may like to name P + Q as R, but you will find this is not allowed as R is 

reserved in Excel for other use. 

For the other operations, you follow the same steps with the appropriate changes. The 

Excel function for 

A-B is = A - B 

AB is = MMULT(A,B) 
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AT (Transpose of A) is = TRANSPOSE(A) 

A-1 (Inverse of A) is = MINVERSE(A) 

det(A) (Determinant of A) is = MDETERM(A) 

 

Task: Find P – Q, PQ, PT, Q-1, det(P) and PT where 

 

𝑇 = [
1 2 3
4 5 6

] 

  
Tutorial 3 Homework 
 
Part 1. Answer the following questions to verify your progress. 
 
1. What does the function =IMREAL(X) do? 
 
A. It calculates the product of the imaginary and the real parts of X 
 
B. The syntax is really =IMREAL(a,b) and it produces a complex number with a as 
imaginary and b as real part 
 
C. It renders the real part of the complex number X 
 
D. It swaps the real and imaginary parts of X 
 
2. What are the four roots of the equation x4=1?  
(Write out your answer in the space provided) 
 
3. In step 12 you calculated the root of x15=1. You could consider each root as a vector 
originating from the origin. The set of solutions then looks like the spokes of a bicycle 
wheel. What is the vector sum of all solutions? (Integer please) 
 
 
Vector sum = _________________. 
 
4. In last week’s computer lab we have seen the hyperbolic 'trumpets' around a 
calibration line. Make a sketch showing how you would determine the errors in the 
value of an unknown using the line with trumpets. 

Part 2. Excel Spreadsheet Assignment 

 An analyst determines the absorbance of a solution known to contain 4 organic 
compounds X=A, B, C and D at four different wavelengths λ= 435,472, 513 and 570 nm.  
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The extinction coefficients ελ(X) for the 4 compounds at these 4 wavelengths are known 
(units lit/mol): 

 
 
The values she finds for the absorbance in a cuvette with L=1cm are: 

 
What are the four concentrations? 
(Hint: Absorbance A= ελLc is an additive quantity, so you can write out the problem as a 
set of linear equations. Then write this as a matrix formula and see if you can solve it by 
matrix algebra. 
 
Hint: the equations have the form 
 

𝐴1 = 𝜀11𝑐1 + 𝜀12𝑐2 + 𝜀13𝑐3 + 𝜀14𝑐4 
 

𝐴2 = 𝜀21𝑐1 + 𝜀22𝑐2 + 𝜀23𝑐3 + 𝜀24𝑐4 
 

𝐴3 = 𝜀31𝑐1 + 𝜀32𝑐2 + 𝜀33𝑐3 + 𝜀34𝑐4 
 

𝐴4 = 𝜀41𝑐1 + 𝜀42𝑐2 + 𝜀43𝑐3 + 𝜀44𝑐4 
 
We can write these compactly in matrix form as: 
 

𝑨 = 𝜺𝒄 
 
Where the knowns are the vector A of absorbances and the matrix of the extinction 
coefficients. We can solve for the concentrations using the matrix inverse: 
 

𝜺−𝟏𝑨 = 𝜺−𝟏𝜺𝒄 
 
Which tells us that 
 

𝒄 = 𝜺−𝟏𝑨 
 

  

A B C D

435 325 3.5 0.1 100

472 50 200 590 0.1

513 1290 700 4.3 12

570 2 0.1 24 1350

435 0.070259

472 0.480401

513 0.791769

570 0.433884
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Tutorial 4. Fast Fourier Transforms 

 

Phase factors 

There are functions that produce roots-of-one as a function of time (t) or place (x). A 
good example is a Bloch function φ(x) = exp(i kx) or the phase factor φ (t)= exp(2πiνt)= 
exp(iωt).  The first is a function of location (x), the latter of time (t). In both cases the 
function runs around on the unit circle we have seen before. 

 
Notice for the latter that there are two conventions for the frequency. If we use ω the 
factor 2π is usually considered included in the frequency ω. (The same holds for the 
wave vector k in the Bloch function). You probably have run into these functions before 
because they are used a lot in science. 

 
The phase factor is exactly what the name says: If I multiply by such a factor I leave all 
magnitudes intact but I impart a certain phase in the complex plane to my value. 
Thinking in the complex plane all I do is: rotate along the unit circle, not stretch or 
contract its radius. This property is the basis for the Fourier transform. If I have a 
measurement f(t) as a function of time I can analyze it by frequency by multiplying with 

a phase factor φ (t; ω) = e-it and integrating it over all time: 
 

𝐹(𝜔) = ∫ 𝑓(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡

∞

−∞

 

 
Essentially all you do here is label each measurement with a phase angle leaving all 
magnitudes intact and see what that gives over your whole data set for a given 
frequency. In quantum mechanical terms: I am computing an overlap integral to see if 
my function f(t) contains φ (t; ω). (Yes, my phase factors are an orthogonal set: no 
overlap between them ever). Another way of looking at it is to think of my data as a 
moving string frozen in time and now I decompose all motion in its normal modes (like 
you do with vibrating molecules). Each frequency represents a normal mode.  
  

Wave forms 

A Fourier series is a decomposition of a repeating wave in terms of sinusoidal functions. 
A Fourier transform (FT) is the integral representation of the type of decomposition. An 
FT can also be carried out on a non-repeating wave form e.g. Gaussian or Lorentzian 
functions. Four important types of wave forms are shown in the figure below for 
reference as we proceed with the lab. 
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Fourier transforms 

This remarkable decomposition operation is known as the Fourier transform and it can 
be shown that (under certain conditions) the new function F(ω) (in the frequency 
domain) contains the same information as the original function f(t) (in the time domain). 
There is also an inverse operation that brings F(ω) back to f(t). It involves a very similar 
phase factor φ ‘(t; ω)= exp(-iωt). Thus Fourier transformation allows you to look at your 
data in a different way without altering the information content. 

Discrete and Fast Fourier transforms 

Mathematically the Fourier integral runs from -∞ to ∞, but data are typically more 
limited than that. If you take your data at regular time intervals (a constant sampling 
frequency) it is also possible to do a Discrete Fourier Transform, i.e. one where all 
integrals are replaced by sums:  
 

𝐹(𝜔) = ∑ 𝑓𝑡𝑒−𝑖𝜔𝑡𝑑𝑡

𝑛

𝑡=−𝑛

 

 
 
and there are algorithms to do that fast. The most famous is the Cooley-Tukay 
algorithm. That is also known as the Fast Fourier Transform (FFT). The crucial thing to 
understand about the FFT is that it uses the symmetry (think of the unit circle above) to 
divide the process into two processes, one with even and one with odd terms. Because 
of this division by two, the number of points must be a power of two. If you do not have 
a factor of 512, 1024, 2048 etc. you can use zero filling to get the number of points you 
need. You just add a bunch of points to your data that are all zero. 
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Computer lab 

The data analysis pack of Excel contains a Fast Fourier Transform option based on a 
famous algorithm, that of Cooley and Tukey. In its original form these authors showed 
that the fastest way to do a transform on a discrete data set (a Discrete Fourier 
Transform DFT) is attained if the data set contains a number of points that is a binary 
power: n= 2N.  That is n should be 2, 4, 8, 16, 32, 64, 128, 256, 512, etc. 
If the number of data points n contains factors of 3x, 5y and higher primes it was later 
shown that transformation is possible but takes more computer time. If n contains large 
prime numbers the algorithm gets pretty slow, cumbersome and complicated.  
Excel contains the original algorithm and thus requires n to be a binary power. We will 
use n=512. 
 

 Open up spreadsheet FFTlab and make sure the macros are active. Excel tends to 
deactivate them for security reasons. To activate them go to File / Options / Add-
ins. Then select Analysis Toolkit. Click on Go at the bottom of the menu. Actually 
you need to activate both Analysis Toolkit and Analysis Toolkit VBA, but they will 
both appear on a menu. Select both and click OK. 

 Put a 0 in A1 and 1 in A2. Select A1:A2 and put the cursor on the bottom right 
corner of the selected range until a + appears. 

 Now drag the + sign down until you reach A512. The cells should fill with integers 
and the last one should read 511. This is your time axis (say in seconds). This 
means that your sampling rate is 1 point per second. 

 Type in cell B1:  =A1*2*PI()/512  and Enter.  

 Put the cursor on the bottom right corner of B1 until it turns into a +. Then 
double-click. This should copy and fill the formula down to B512 

 As you see from the formula the B column now runs from 0 to 2π in 512 steps. 
This is handy because we are going to work with sines and cosines   

 The cell C1 is where you can experiment with functions. For the moment let’s 
just put in some normally distributed noise.  Type in C1: = NORMSINV(RAND()). 
Use the same copy and fill trick to spread the formula over the C range you did 
before for the B range. 

 Now  select B1:C512 (Activate B1, hit End; hit Down-arrow; hold down shift; hit 
Right-arrow; hit End; hit Up-arrow ) 

 Make a scatter-plot of these data with a solid line only. Should look pretty 
messy. (All you have is noise.) This is your time domain plot 

 I made a button for you. What is does is copy the formulas in the C column and 
past them as values (so that they do not get recalculated all the time and slow 
the spreadsheet to a crawl). Then it runs the Fourier Transform option of the 
Analysis Pack (You can also use that directly) 

 In I1 type =A1-1 and then double click to fill I1:I512 

 Scroll down till you see E257. As you see it is also a real value (the imaginary 
component is zero). This ‘half-way’ frequency is known as the Nyqvist frequency 
and it represents the sum of all odd points minus the sum of all even ones (-+-+-
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+-+-+ etc.) . That is: the phase angles alternate between 0 and π from point to 
point.  This is actually the highest frequency your data provide any information 
on. If you want to measure something that happens faster you should have 
measured with a higher sampling frequency than 1 point per second. In that case 
your data set would be larger, (say 1024 points if you sample twice as fast). In 
that case the Nyqvist frequency would be down at row 513 not at 257. 

 If what you study actually fluctuates at a frequency a bit faster than the Nyqvist 
frequency, say at ωNy+ δω (i.e. you did not sample fast enough) you will get 

something known as aliasing. A false signal will appear at a frequency ωNy- δω in 
your analysis. If this happens with a sound recording you get ugly distortions. 

  Look at the contents of cells E256 and E258. As you can see they are each 
other’s complex conjugates. The values below the 257th row represent negative 
frequencies and do not contain any new information.  The symmetry around the 
Nyqvist frequency comes from the fact that the original data are real numbers. 
(The symmetry needs to be preserved when operating on the data in the 
frequency domain otherwise the inverse transform will not yield real numbers).  

 Change the value in I258 into -255 and in I259 into -254.  Then select the two 
cells and double-click the bottom right corner to fill. All the way at the bottom 
the last number should read -1. 

 Type in J1: =IMABS(E1)^2. This calculates the value of |Z|2 = Z*Z of the complex 
numbers that the FFT produced. This value is known as the power spectrum or 
the intensity of your signal. 

 Use the bottom corner trick to fill the formula down to J512. 

 Make a scatter plot of I1:J512 and make the Y-scale logarithmic (Click on one of 
the points, right click and go to the format menu). This is your frequency domain 
plot. Note that the plot looks symmetric about 0, which tells you that the 
information content in the last 256 points is the same as in the first 256. 

 The graph should look pretty random, because the transform of random is 
random again: random (white) noise contains all frequencies equally. (Think of 
white light!) 

 Let’s do something less random: Type in C1: =COS(B1*4)  and do the + trick to fill 

 Push the FFT button. Graph A1:E512 (i.e. select columns A and E and then make 
a scatter plot selecting the line option). 

 I recommend that you save this spreadsheet and a new spreadsheet where you 
type in the function COS(B1*4) again. The spreadsheet before you perform the 
FFT function can be called LAB4A.  Then the spreadsheet after you press FFT you 
can save the sheet as LAB4A_FFT. The reason for this procedure is that the FFT 
function replaces the C column with values and the original function is lost. If you 
do this for each function you will have a record of your work that you can return 
to. To show that you have done the experiment you could either submit your 
figures pasted into a PPT document or simply submit the last step in this series of 
functions. 
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 Compare the two graphs in the time domain and in the frequency domain. As 
you see all the frequencies are zero now except harmonic number 4. (see cell J5, 
but also look at E5). 

 Do the same for =SIN(B1*4) 

 Did anything change? Not in J5, but what happened to E5? 

 The problem is that by calculating Z*Z we have thrown away the phases of the 
complex numbers in the E column (the Fourier components or harmonics)  and 
sines and cosines only differ by a phase shift of π/2= 1.5708. We will not need 
phase information here, but if you want to extract it you can use 
(=IMARGUMENT(E1)). 

 We can add some random noise to the cosine function. To do this type in                       
C1: = cos(4*b1)+ 0.3*normsinv(rand()) . Fill the C column and recalculate the FFT. 

 As you see the data generated in the C column are a pretty noisy cosine wave, 
but the fourth harmonic still stands out nicely above an ocean of noise. Its 
intensity is still about 65000, and its phase is only a little different from zero. All 
the other harmonics have about the same intensity and their phases are 
randomly scattered between  - π and + π.  If we could throw away all harmonics 
but number four and transform back what would we get? 

 Let’s take another example. We can call this a linear combination of sinusoidal 
functions. Type in C1:=cos(b1)+0.8*sin(2*B1)+0.7*cos(4*b1+0.1)+0.2*sin(8*b1) 
and fill the C column. Then save as LAB4B. Then FFT and save as LAB4B_FFT. 

 As you see the ‘data’ in the C column are now a pretty complicated function and 
you would never have guessed how many components there are just by looking 
at the graph. The FFT however flawlessly picks up how many components there 
are, how strong they are and what their phases are. This is the main use of 
Fourier transforms: analyze data by frequency. This is particularly useful if you 
think of colors of light or pitches of sound. 

 Other periodic functions include the sawtooth function. 
Fourier analysis works for any periodic function. In fact, Fourier series is just a 
way to decompose any repeating function into a linear combination of sines and 
cosines.  One simple function that we can create is the sawtooth function. Type 
in C1: =A1/512 and fill the C column. The function looks like a straight line. 
However, you must remember that this is a repeating function. At end of the rise 
it returns to zero and rises again. Call this spreadsheet LAB4C. Study the function 
with FFT by clicking on the FFT button and call the spreadsheet LAB4C_FFT. 

 Change both the x- and y-axes of the frequency domain plot to logarithmic. 
NOTE: That plot will only show the positive values since you cannot take the 
logarithm of a negative number. Using this representation the FFT has the 
appearance of a straight line.  Using a Fourier series a saw-tooth function can be 

written as f(t)=2[ sin(t)- sin(2t)/2+ sin(3t)/3-sin(4t)/4+…..] = 2Σ±(sin(ft)/f)  This 
means that the intensities I=f2 should drop off with the square of the frequency 
f.  Thus, the ln(I) = -2 ln(f), which is evident in the log-log plot. The slope is 
negative because the intensities decrease as the frequency increases. 
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 Let’s look at a squarewave function: =IF(A1<256,1,-1) . This time the slope of the 
double logarithmic plot is -4 (the amplitudes now drop off as the square of the 
frequencies). However, because the block function is an odd function 
(antisymmetric around the midpoint) all even harmonics are empty. Thus, the 
values of the log-log plot have an oscillatory appearance. You can call this pair 
LAB4D and LAB4D_FFT. 

 You can represent a Gaussian function in Excel using C1: =NORMDIST 
(A1,244,15,0). Fill the C column. This should give a Gaussian peak around x=244 
with a width of 2x15. As you see the FFT is also a Gaussian. Notice that the 
intensity drops to zero pretty fast at higher frequencies. You can call these LAB4E 
and LAB4E_FFT. Now you have a record of each wave form and the FFT. 

 Change the axes of the frequency domain plot to linear-linear if they are not 
already. Then take the FFT. The Fourier-transformed Gaussian is also a Gaussian, 
but now it is in frequency space.  This is a unique property. The Gaussian is the 
only function whose FT has the same functional form. 

 Do this again but replace the standard deviation =15 by 5. What happens in the 
frequency domain? This domain is often called reciprocal space. Why? 

 What happens if we put the peak somewhere else: =NORMDIST(A1,380,5,0)? 

 Let’s add some noise to the original Gaussian. Use C1: 
=NORMDIST(A1,244,15,0)+ 0.005*NORMSINV(RAND()) and then fill. 

 Do you still see the Gaussian in reciprocal space?  Where does the intensity in 
the low frequencies come from? The peak? The noise? Both? 
 
Some examples of FFTs: 

1. Scattering of light is essentially mother nature’s way of doing a Fourier 
transform, so all X-ray diffraction in based on it 

2. Any  regularly sampled 1D data set can be analyzed for its noise spectrum 
and operation in the frequency domain allow noise suppression and 
deconvolution (removal of peak broadening) 

3. Interferometry is based on inducing path (and thus phase) differences. It 
is used in e.g. FTIR as an alternative for a grating monochromator 

4.  Pulsed techniques like pulsed NMR or pulsed voltametry hit a sample 
with a block wave, i.e. a mixture of frequencies, the response of each of 
which is unraveled by FFT 

5. Mechanical spectroscopy hits samples with block function like 
deformations, again:FFT. 

6. Fourier transforms are a standard trick in solving diff-eqs. 
 

 

Tutorial 4 Homework 

Part 1. Questions related to the FFT lab 
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1. After adding the noise to the Gaussian does the intensity still drop to zero at higher 
frequencies? 
 
yes ___________   no  _____________ 
 
2. Do you still see the Gaussian in reciprocal space? 
 
yes ___________   no  _____________ 
 
3. Where does the intensity at low frequencies come from 
 
A. mostly from the Gaussian peak but some of it also from the noise 
 
B. the Gaussian peak only 
 
C. mostly from the noise but some of it also from the Gaussian peak 
 
D. the noise only 
 
4 Prior to World War II the technology of making movies was not advanced enough to 
take more than 16 frames per second or so. In old silent movies this is often visible 
when you see a wheel or a propeller starting to turn. At first it seems to start turning the 
right way but at some point the propeller seems to stand still and then start to turn 
backwards. 
 
Why is this related to the Nyqvist frequency? 
 
 

Part 2. Numerical computations using Excel 

2.A. Modeling NMR spectra 
 
Using the FFT worksheet activated with the same methods used for the laboratory, let’s 
create some Free Induction Decays (FIDs) that represent the kind of signals seen in NMR 
spectroscopy. In NMR a 90o pulse rotates the magnetization due to the nuclei into the 
x-y plane. Then this magnetization rotates at a characteristic frequency and relaxes back 
to the vertical configuration. The FID is a cosine (or sine) function multiplied by an 
exponential function.   

1. First type into C1 := COS(32*B1)*EXP(-B1). Fill the C column. Take the FFT 

2. Determine the position and estimate the line width of the resulting spectral 

feature. To determine the line width find the full width at half maximum 

(FWHM). What is functional form of the line shape? 

3. Next type into C1 := COS(32*B1)*EXP(-2*B1). Fill the C column. Take the FFT 
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4. Determine the position and estimate the line width of the resulting spectral 

feature. We can call the exponent the relaxation rate. For example, in the first 

part the relaxation rate, , is   = 1 and in the second trial the relaxation rate is  

= 2. What can you conclude about the relationship between the relaxation rate 

and the FWHM? 

5. If there are two spins connected through a bonding pathway (H-C-C-H) then they 

can interact by a scalar coupling. In this case one spin’s magnetic field will cause 

a splitting in the magnetic field of the connected spin. To model this effect type 

into C1 := 0.5*(COS(B1*30)+COS(B1*34))*EXP(-B1). Fill the C column. Take the 

FFT. Describe what you see. What is the scalar coupling J? 

6. In the following aspect we will consider the appearance of the scalar coupling as 

the relaxation rate increases. To compare with the above scalar coupling type: 

A. C1 := 0.5*(COS(B1*30)+COS(B1*34))*EXP(-2*B1). 

B. C1 := 0.5*(COS(B1*30)+COS(B1*34))*EXP(-4*B1). 

7. Describe the observed line shapes as the relaxation rate increases from  = 1 to 

 = 4. Can you state a general rule for the appearance of line shapes in terms of 

the relative magnitude of J and ? 

2.B. Modeling crystal structures 
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Scattering, including X-ray diffraction is nothing but a Fourier transform of the electron 
density function of your sample, e.g. an ice crystal. Consider how the electron density 
(the local concentration of electrons) fluctuates inside an ice crystal. We shall pretend it 
is just a one dimensional row of ordered molecules and project all the electron density 
onto the x-axis. 
 
Open up spreadsheet: icefft.xls.  You will find the functions with and without S and a 
“liquid” (amorphous) one. Also a 1D crystal of hydrogen peroxide is simulated. 
 
Make a graph of the four functions. They should look like above. You can think of the x-
axis as Angstroms, although I did not adhere to ionic radii. Notice that the third function 
is not quite as regular as the others. 

 How many molecules are there in 8 Angstroms?  

 What is the repeat unit in Angstrom? 
 
Now transform each of the functions by FFT.  You can transfer the data to the other 
sheet and use the button, but you can also go to the data analysis pack and invoke 
Fourier transform. There is a popup where you specify where your data are and where 
you want the result. 
 
We will not consider the zeroth harmonic. In X-ray diffraction that corresponds to the 
incident beam passing straight through the sample and you cannot measure anything if 
there is no diffraction. Now make a plot of the intensity = (IMABS)2.  The graph you get 
looks very much like a powder pattern, which you will encounter later in the 
demonstration portion of the course. However, here you may consider these peaks 
reciprocal space to be due to the periodicity of the structure. For example, the peak at 
in reciprocal space represents the minimum periodic “wavelength” of 1 molecule per 
Angstrom. In that case how would you interpret “frequencies” of 1/2 or 1/4? Perhaps 
more challenging is to understand the meaning of the peak at 3/4. Plot your output in 
reciprocal space (i.e. using the (IMABS)2 of the FFT and try to interpret the peaks that 
result. 
 
The substitution of one molecule of H2S in the lattice of H2O is called dirty (or impure) 
ice. Interpret the (IMABS)2 of the FFT of this structural file. 

 Does the substitution of O by S affect the peak positions? 

 Does it affect the peak intensities? 

 What happens to the ‘empty’ harmonics between the peaks, when the strict 
translation order is broken in the dirty ice?  

 
The amorphous ice structure has greater disorder. Take the FFT of this structural file and 
then plot the (IMABS)2. Describe the change in structure. Can you account for this 
change? 
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In what ways is the hydrogen peroxide reciprocal lattice (given by the FFT) different 
from the ice reciprocal lattice? 
 
Appendix: Plot functions in Excel 
Changing plot limits (also called bounds) in Excel involves finding menu options buried 
under several layers of menus. The way to find these is illustrated in the figures shown 
in this Appendix. 
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Tutorial 5. Non-linear fitting 
 

Non-linear fitting 

 
As we have seen the matrix formula (XTX)-1XTY allows us to calculate the least squares 
estimates in a variety of models, provided these models are linear in the parameters β. 
In many cases we cannot linearize our fitting problem. Fortunately you can still minimize 
the residuals (actually their sum of squares SS) with a very similar formula (JTJ)-1JTY.  
 
The difference between the two is that X only contains information on where we take 
our data (our independent variables). J however also depends on the parameters 
themselves. In fact J contains the derivatives of the fit function f(x; β) versus each 
parameter in each chosen data point. 
This means that we need to have an idea of what β is before we can compute J. It also 
means that (JTJ)-1JTY will only give us a better estimate of β, not the best. That’s no 
problem: we can keep applying the process until no more improvement is observed.  
This iteration process is called refinement.  
 

1. make guess of parameters 
2. calculate the J matrix based on that guess 
3. calculate (JTJ)-1JTY to get better parameters β, 
4. if this is an improvement go to step 1; if not stop process 

 
 
What refinement does is look for the minimum in the SS function. However this function 
is now like a landscape with hills and valleys, not a single well. Therefore the procedure 
will only work if your initial guess for β is close enough to the final minimum. Otherwise 
the procedure gets lost in the hills. 
 
The final (JTJ)-1 matrix and Sum of Squares tells you the uncertainties in the final 
parameters, just like its cousin (XTX)-1  did. Because you have to terminate the 
refinement process somewhere (if improvement is less that some criterion) these values 
are known as asymptotic standard errors and (JTJ)-1 produces an asymptotic variance 
covariance matrix. 
 
Excel contains an add-in that will do all this for you and we will fit some data with it. The 
add-in is called the solver. The instructor/TA will help you to make sure it is loaded. 
Unfortunately the Excel solver does not produce values for the uncertainties, but the 
book Excel for Chemist by J. Billo has another module on its CD that remedies that. 
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The data 

 
The data we will be fitting comes from the TGA, in fact it is a decomposition run on 
Calcium oxalate monohydrate (CaC2O4.H2O). It represents a series of decomposition 
reactions the oxalate as the temperature is ramped to 1000oC.: 
 
CaOx.H2O CaOxCaCO3CaO 
 
The first step produces water vapor, the second CO and the third one CO2. 
 
Open the Non-lin excel spreadsheet. Select the data block and make a graph (line only) 
of the data in the C column (weight) versus the A column (time). We will work in time, 
but as the oven was ramped at constant heating rate we could easily translate time into 
temperature (in the B column). 
 

The Model Function 
 
The biggest problem with fitting data is always to formulate a reasonable model. More 
often than not you do not know ‘the’ model and this is a good example: a good physical 
model is not known for this kind of data. The graph certainly makes it obvious a straight 
line will not do!  Deviations from straight can often be modeled by adding higher order 
terms (a polynomial) but this is not recommended for this type of data.  
Sigmoidal (S-shaped) step functions are notorious for requiring an infinite number of 
terms to fit well.  This violates the parsimony principle: always try to retain as many 
degrees of freedom as you can, or stated differently: is you can fit something with three 
variables, do not fit it with 300. If you throw in enough parameters you can fit even the 
kitchen sink! This is why we fit this with a function that already has a sigmoidal shape, 
the logistic function lgt(x): 

𝑙𝑔𝑡(𝑥) =
𝑒𝑥

1 + 𝑒𝑥
 

We can fit every decomposition event as: 
 

𝑊𝑜𝑙𝑔𝑡(𝑎 − 𝑏𝑡) 
 
As you see there are three parameters (not 300!) per event: Wo, a and b.  Wo stands for 
the amplitude of the change (the entire weight loss of the event).  The time around 
which the event happens is tevent= -a/b and the value of b represents the slope in the 
weight curve at this time (how sudden the event takes place). As we are losing weight its 
value is always negative in our case. As we have three events, but do not lose all weight 
the total fit function becomes 
 

𝑊(𝑡) = 𝑊𝑜,1𝑙𝑔𝑡(𝑎1 − 𝑏1𝑡) + 𝑊𝑜,2𝑙𝑔𝑡(𝑎2 − 𝑏2𝑡) + 𝑊𝑜,3𝑙𝑔𝑡(𝑎3 − 𝑏3𝑡) + 𝑊𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 
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As you see we have a total of ten parameters: 3+3+3+1. 
It is advisable to build up such a fit job systematically in your sheet and not write out a 
function like this in one cell as you are bound to make mistakes. 
 

 First copy the entire data block (three columns) and open a new sheet and paste 

it in cell A8, B8 and C8. It consists of 1452 points so that the three columns 

should be filled down to line 1460. 

 Now put the following initial guesses for the parameters in the range C1:G4 

including the labels. The numerical parameters should be in D2:G4. 

 first second Third Final 

W 2 3 5 7 

A 15 40 35  

B 2 2 1  

1. Type in C6: t-event  

2. Type in D6: -D3/D4 

3. Copy D6 over D6:F6 

4. Type in D8: =D$3-D$4*$A8  (this calculates a-bt  for the first event) 

5. Copy D8 over D8:F8  

6. Type in G8: =EXP(D8)/(1+EXP(D8)) (The lgt function) 

7. Copy G8 over G8:I8 

8. Type in J8: =$D$2*G8+$E$2*H8+$F$2*I8+$G$2 (This computes the W(t) fit 

function) 

9. For plotting purposes we will copy the relevant columns: 
10. Type in K8: =A8; (time)  

11. Type in L8:  =C8 (the measured weight) 

12. Type in M8: =J8 (the fit function) 

13. Type in N8: =L8-M8 (the residual) 

14. Now select D8:N8 and use the double click on the + symbol that appears on 

the bottom right corner of N8 to double click and fill all your calculations 

over the whole data set. 

15. Select the K,L and M functions and make a chart with only lines of the 

measured and calculated data. 

16. You can now change the values in the parameter block to make the function 
fit a bit better.  It is useful to change them by hand to get a feel for what they 
do. If the new guess is really bad, just hit Ctrl+z to correct your mistake.  Here 
is a trial example using the input data set from the website. 

17. n e.g. M4 type =SUM(N8:N1459^2)/1450/STDEV^2. To activate this formula 

use <Shift> <ctrl> <Enter>. This calculates the a value known as chi-squared,  
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𝜒2 =
∑(𝑦𝑖 − 𝑦𝑚𝑜𝑑𝑒𝑙)

2

𝑁𝜎2
 

 

Chi-squared is the sum of the squares (SS) divided by the number of data 

points and STDEV, where STDEV is the standard deviation in your data. You 

may estimate STDEV using a flat section of the data to generate a series of 

numbers. Then you can calculate the STDEV for this section.  Remember that 

STDEV is equal to,  

 

𝜎 = √
∑(𝑦𝑖 − 〈𝑦〉)

𝑀
 

 

where M is the number of data points in the short section you are using to 

calculate the STDEV. M is not at all the same as the value of N you used 

above, which consists of all of the points in the data set. 

18. Try a change in one of the parameters and look at the value of SS. It should 
get lower as the fit gets better. When you have obtained an initial guess that 
is reasonably close to the shape of the data then you can use the solver to 
get a better fit. 

19. Now run the solver. It should be under Data. 

20. On the pop up click the icon with the red dot of the set target cell option and 

select the cell that contains the SS (M4) 

21. Then click the Min  option of the Set equal to set. (We want to minimize SS!!) 

22. Click the red dot icon of the By changing cells block an select the cell that 

contains the final weight. Then click solve. 

You can choose which parameters you want to run first. Often it is wise not to take too 
many parameters at once, but once you are close enough to a good fit you can select 
then all at once. E.g. you can click the red dot icon and select D2:F4 then type a comma 
and then click G2 to get them all. The fit is not bad but not ideal either. Make a plot of 
the residuals to see how bad it is!  

In programs that use non-linear least squares fitting the errors in the parameters 
can be output using the second derivative of the JTJ matrix to estimate the root-mean-
square error in each parameter. It is important to have the correct weights for the 
estimate (i.e. the error should be calculated for displacements of the fitted curve 

relative to the  you calculated above for a flat portion of the data). This type of analysis 
has numerous assumptions that may be incorrect. The error in the data may be larger 

than the  you calculate. The curvature of the JTJ matrix may have significant distortions 
from a quadratic shape. And so on. For this reason we will use another method to 
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estimate the quality of the fit using a comparison of the the parameters to a physical 
model. This is often a useful approach and has more significance for the scientist than a 
number that comes from a statistical analysis that has possible numerical inaccuracies. 
 
Let us make a hypothesis: we have obtained four weights from the regression, let us 
assume they correspond to the compounds H2O, CO, CO2 and finally CaO.  

1. Compute the molar masses for these four compounds and plot the weights 
against the molar masses. This should give a straight line. The weight of the CaO 
is only correct if the instrument was properly calibrated.  

2. Do a linear regression of the weights against the Mw. How many moles of Ca did 
the sample contain? 

3. Using the slope and intercept compute an estimated weight for each compound 
and determine the absolute value of the residual from the regression line. These 
residuals should correspond to the asymptotic standard errors in the weights, 
which we did not calculate (it can be obtained from the covariance matrix JTJ as 
discussed above). To get a better feeling for how important the residuals for 

each point (i.e. √(𝑦𝑖 − 〈𝑦〉)2) you could divide the residual by the standard 
deviation for the straight line fit. 

4. What does the result say about the chemistry? 
 

Assignment in peak fitting 

 
Go to sheet 2 of the nonlinear spreadsheet.  
 
I generated some data for you. They consist of two partially overlapping Gaussian peaks. 
I made a version with two different noise levels. As these data are generated ones you 
may expect the final residuals to be random noise only. (Check residuals. Real data may 
not always be so nice.) 
 
The data represent a problem that is often encountered in science, that of peak 
resolution. In many techniques we get a pattern consisting of a series of signals each in 
the form of a peak. This is true for spectra, for thermograms, for chromatograms and 
many other types of data alike.  
 
The peaks can have a variety of shapes. Gaussians are the simplest one and we will only 
do those today. Unfortunately peaks may overlap. The more they do the harder it is to 
separate the two signals and derive independent information from them. Limited 
overlap can be overcome by peak fitting. 
 
Caution: 
 Peak fitting works reasonably well if: 

 the overlap is not too large, 
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 there are not too many peaks involved, 

 you know how many there should be, 

 you know what shape they should have (Gaussian, Lorentzian etc.) 

 the noise level is low 

 the peaks are not too broad 

 the peaks are (more or less) symmetrical 
 
If any of these requirements are violated, peak fitting notoriously yields various 
different solutions that are fit equally well but are quite incorrect. In other words: you 
can get out what you want by changing the model….  
 
This is why in e.g. chromatography people try to avoid overlap, e.g. by choosing a 
different internal standard that does not overlap. Instrument builders also try to make 
their broadening factor as small as possible to avoid or diminish overlap trouble. 
However overlap cannot always be avoided and fitting may be all you can do. The 
parsimony principle applies here: always fit with as few parameters as possible while 
demonstrating the fit is as perfect as random noise allows. (Look at residuals!) 
 
There are other statistical methods that do allow you to use overlapping data, but they 
typically require that you do not have one spectrum, but a series of them, e.g. taken as a 
function of time 
 

The data 

 
For each of the ‘spectra’ that I generated, use non-linear fitting to determine the 
amplitude, the position and the width of the two overlapping peaks, i.e. six parameters 
in total. In Excel a Gaussian function f(x) is easily generated by the function: 
 
 =amplitude*NORMDIST(x,position,width,0) 
 
Add two of these terms to generate a fit model. Note that in Excel the NORMDIST 
function is normalized. This means that it integrates to unity. Thus the amplitude 
parameter is automatically also the integration value of each peak. 
 
In order to use solver you will also need to generate a target. Our target is chi-squared 
(𝜒2), which is defined as above. 
 
I used integer values to generate the data for all six parameters. How large is the bias, 
i.e. the difference between the parameters you find and the nearest integer? How does 
the noise level of the data influence the bias? What would happen if the noise level 
would get larger? What if the peaks got broader? Closer together? 
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Tutorial 5 Problem set            

 
Part 1. Test your knowledge of the concepts.  
Answer the multiple choice questions. 
 
1. Parsimony means: 
A. We need as many parameters in a model as we have data points 
B. We can only find the precision of our parameters in an asymptotic  
   way in nonlinear regression 
C. We should try to fit with as few parameters as we can 
D. We have to have a good initial guess of our parameters otherwise  
   the nonlinear fit does not work 
E. We should use refinement to fit nonlinear models 
 
2. If the model is linear in the parameters we do not need to iterate because 
A. The dependent variables do not depend on the parameters 
B. The independent variables do not depend on the parameters 
C. The parameters do not depend on the dependent variables 
D. The elements of the J (or X) matrix do not depend on the  
   parameters 
E. The random errors in the measurement do not depend on the  
   parameters 
 
3. The logistic function has an important property: both for very low and for very high 
values it approximates a constant value ('goes flat'). This is important because: 
A. This is actually detrimental because it causes lack of fit 
B. This allows us to measure the weight loss before and after an event  
   even when it overlaps with another 
C. This allows subtraction of the constant weight of the platinum   
   basket 
D. This causes the function to have only three parameters 
 
Part 2. Numerical Calculations using an Excel spreadsheet 
 

1. Open the spreadsheet exponential_functions_1.xlsx 
2. Create a non-linear fitting function that consists of a single exponential function, 

which will have this form =EXP(-$X$1*A1). The cell X1 will have the rate constant 
parameter. Make an initial guess for X1 by plotting the model function and data 
on the same plot. Once you have found a reasonable value for X1 proceed to the 
next step. 

3. Determine the noise in the data by calculating the standard deviation of the last 
50 points. We will call this value 𝜎𝑛𝑜𝑖𝑠𝑒, i.e. this is an estimate of the noise in the 
data. 
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4. Define a chi-square function in a cell, e.g. Y1. Recall that  

𝜒2 =
∑(𝑦𝑓𝑖𝑡,𝑖 − 𝑦𝑑𝑎𝑡𝑎,𝑖)

2

𝑁𝜎𝑛𝑜𝑖𝑠𝑒
2  

 
5. Use solver by minimizing on the 𝜒2 function. What should the value of 𝜒2 be for 

a good fit to the data? What is the value of 𝜒2? 
6. Plot the residuals. Do they have any structure? Explain your observations. 
7. We will use a fit of trial and error to determine the error in the fit parameter (i.e. 

the rate constant). The error limits can be found by manually changing the value 
of the parameter until 𝜒2 increases by 1 unit. Try this both by increasing and by 
decreasing the parameter. Please keep track of the original value and the 
bracketing values. Why does 𝜒2 increase regardless of whether you increase or 
decrease the parameter value? Please explain.   

8. Now we will compare the fit using a linear method. Create a new spreadsheet by 
copying the exponential_function_1 spreadsheet. You may call it 
exponential_linearized_1.xlsx. 

9. Linearize the function in column B (the exponential) by taking the logarithm. 
=LOG(B1). Double click to fill the entire C column. Plot C vs. A using a line scatter 
plot. Note that there is a region that looks nicely linear and then the data start to 
look messy. Why is this? For the purposes of fitting we can select the linear part 
of the data. Delete all of the cells below cell 400. Now the plot should look fairly 
linear (although is still gets noisy near the end).  

10. Use LINEST to fit these data to a linear model. Note that you want to set the 
stats flag to TRUE. The function call has the form = 
LINEST(B1:B399,A1:A399,TRUE,TRUE). Use <Shift><ctrl><Enter> to execute 
LINEST. 

11.  Compare both the fitted value and the magnitude of the standard error of the fit 
to the values obtained from the non-linear fit. Note that the LOG function in 
Excel is log10 (log to base 10) so you will need to convert the value for the slope 
using the appropriate factor in order to compare the linear and non-linear fits. 
The factor is the same as that needed to convert a parameter in the exponent of 
base 10 to base e. 

12. Calculate R2 for the linear fit.  
13. Tabulate R2, m and the SE for the linear fit as well as 𝜒2, the rate constant 

parameter and its error from the non-linear fit. 
 

Literature 
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Projects 
The following pages list examples of projects attempted in the past and some reference 
material. 

Dehaloperoxidase enzyme kinetics 

Introduction 
 Enzymes are widely used in the chemical, biochemical and biotechnological 
applications. The range of chemical synthesis that is possible using enzymes is quite 
broad and new methods are under development that will greatly expand the field of 
enzyme use. Enzymatic catalysis is also one of the best understood types of catalysis. 
Many catalysts are difficult to characterize because they function at low concentration 
in complex mixtures and the intermediates are nearly impossible to isolate. In many 
chemical applications the addition of catalysts is understood as kind of “pixie dust” that 
just works, but no one knows why. Biological catalysis or enzymatic catalysis is consists 
many very well characterized reactions, in which we know the structure of the enzyme, 
the details of the active site, and often we know how the substrate binds and precisely 
what aspects of protein structure are responsible for lowering the transition state 
energy. For these reasons enzymatic catalysis can be considered a model for how we 
would like to understand all of chemical catalysis. 

The importance of enzymatic catalysis has been appreciated for more than 100 
years. An early approach to characterization of the kinetics of enzymes is attributable to 
Menten and Michaelis. While there are many variations of Michaelis-Menten catalysis 
the simplest version treats and enzyme, E, and substrate, S, that combine to form a 
complex known as ES, the enzyme-substrate complex and then to form product, P, and 
reform the original enzyme. We can write this mechanism as follows: 

𝐸 + 𝑆 

𝑘𝑜𝑛

↔
𝑘𝑜𝑓𝑓

 𝐸𝑆 
𝑘𝑐𝑎𝑡

→  𝑃 + 𝐸 

Often the Michaelis-Menten equation is plotted as the initial rate, V0, which is equal to 
d[P]/dt.  In this form we have, 

𝑉0 =
𝑉𝑚𝑎𝑥[𝑆]

𝐾𝑀 + [𝑆]
 

Where the Michaelis constant is: 

𝐾𝑀 =
𝑘𝑜𝑓𝑓 + 𝑘𝑐𝑎𝑡

𝑘𝑜𝑛
 

                     
                  
There are several special regimes that can be useful to understand the Michaelis-
Menten equation: 
Maximal rate: If there is excess substrate present the rate is limited by the rate at which 
the ES complex falls apart.  The rate of formation of products is a maximum and Vmax = 
kcat[E]0 is called the maximum velocity.   
Half-maximal rate: If V = Vmax/2, then [S] = KM. 
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Second order regime: If [S] << KM then the rate of formation of products is d[P]/dt = 
kcat/KM [E]0[S].  The rate depends on [S] as well as [E]0. 

 
Figure 1. Michaelis-Menten curves showing the saturation of the kinetics at high [S] 

 Our experiment will determine the Michaelis-Menten parameters for the 
enzyme dehaloperoxidase (DHP). DHP is a highly versatile and interesting enzyme in its 
own right. DHP was first discovered as the hemoglobin of a marine organism known as 
Amphitrite ornata. Nearly 20 years later it rediscovered as a peroxidase capable of 
degrading 2,4,6-tribromophenol, which is a known naturally occurring pollutant in 
shallow coastal waters. In the subsequent 20 years several unique properties of DHP 
have been revealed by enzymatic studies. DHP is also a peroxygenase and an oxidase. It 
has four functions and appears to have activity to oxidize a range of substrates including 
bromophenols, brominated pyrroles and indoles. In this study we will investigate the 
kinetics of DHP or one of mutants in the pH range from 5.0 to 7.5.  We will choose one 
set of conditions and one mutant in the interest of time. However, our goal will be to 
compare the values to published values and understand some new feature or prediction 
about the reactivity. While we can be quite certain that the experiment will work the 
interesting aspect is that the exact outcome may be a new result. 
 The mechanism of the peroxidase reaction involves activation of DHP by H2O2. 
We can think of the reaction with H2O2 as a preliminary step that creates active form of 
the enzyme that we call compound ES. It is compound ES that binds to the substrate 
oxidizes substrate in two steps. Since these aspects are discussed in detail in the 
references 1-5, we will not discuss the mechanism further in this protocol. Rather we will 
ask the student to read the publications and to make the discussion of mechanism part 
of the laboratory report. 
Experimental 

You can measure the time-resolved kinetics of enzymes using a photo-diode 
array spectrophotometer. This type of spectrophotometer reads all of the wavelengths 
from 200-1000 nm simultaneous in less than 1 second. The advantage of this technology 
is that the instrument can be set up to run in kinetics mode, in which successive spectra 
are obtained each 3 seconds. If the kinetic change during catalysis by an enzyme has an 
optical signal in the range of the instrument and a time course that is longer than a few 
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seconds, but shorter than a few hours it is appropriate for measurement using a 
photodiode array. One of the nice features of enzyme kinetic experiments is that the 
overall rate can be tuned by changing the enzyme concentration. Since we measure 
rates relative to the maximal rate, Vmax, and  
𝑉𝑚𝑎𝑥 = 𝑘𝑐𝑎𝑡[𝐸]0  
we see that we can get Vmax to have a range of values by changing the enzyme 
concentration. Of course, there are limitations since the enzyme concentration cannot 
be higher than the solubility of the enzyme and there are practical limitations to how 
dilute the enzyme can be to function in a reliable way.  

In order to obtain data appropriate for a Michaelis-Menten analysis, you will 
need to make 6 dilutions of the substrate with constant concentrations of enzyme and 
co-substrate hydrogen peroxide. The hydrogen peroxidase concentration should be high 
enough that complete conversion to product can be achieved at the higher substrate 
concentration. The volume of solution will need to be sufficient that the optical path of 
the light in the photodiode array passes only through solution and there is no air space 
on the top that could give rise to spurious absorption. In a small volume cuvette (with a 
0.4 cm pathlength) this volume is 1.2 mL. We can summarize the requirements for this 
experiment as follows: 
[E]0 is constant (usually [E]0 = 2.4 * 10-6 M)  
[H2O2] is constant ([H2O2]> [S] for all measurements) 
[S] ranges from zero to a maximal value of approximately 1 mM. 
Note finally that [S] will need to have a higher coverage at low concentrations since the 
Michaelis-Menten curve has a greater rate of change at lower concentrations.  For an 
enzyme that has an unknown catalytic rate, we will need to make a run to estimate the 
kinetics. Then once we have an idea what the value of kcat and Km are we can 
determine the values. Typically we will want 3 values below Km and two values above 
Km. An approximate distribution of substrate concentrations is: 
[S] = 0.1, 0.2, 0.5, 1.0 1.5 and 3.0 Km 

You will need to make stock solutions of the H2O2 and substrate. These solutions should 
be made fresh for each experiment since H2O2 tends to react at room temperature and 
phenols also degrade by slow light and oxygen-dependent reactions. 
 
Setting up the data acquisition 
The data are acquired on a PC using HP 845x UV-Visible System software. You set the HP 
845x UV-Visible System software to Kinetic mode. You will want to monitor at 272 and 
314 nm. The 272 nm wavelength is used to monitor the appearance of the quinone 
product. The 314 nm wavelength is to monitor the disappearance (consumption) of 
substrate 2,4,6-TBP. Note that the instrument will record all wavelengths from 200-1000 
nm on each acquisition (i.e. every 3 seconds in our experiment). Thus, for a 3 minute 
data acquisition 60 spectra will be acquired. We will extract all of these spectra for 
analysis using Singular Value Decomposition. We will use the data at 272 nm for fitting 
the initial slope to obtain V0 as needed for the Michaelis-Menten protocol discussed in 
the introduction. 
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Stock solutions 
The concentration of DHP protein stock solution is determined by using UV-Vis in the 

Standard mode. The absorbance at 406 or 407 nm which is the max of the soret band is 
recorded and used to calculate the concentration of DHP stock solution according to 
Beer’s law: c=A/(ε406*b). The path length b of the quartz cuvette is 0.4 cm, and ε406 for 
DHP is 116,400 cm-1 M-1. The 2,4,6-TBP stock solution in 100 mM KPi buffer (~ 1 mM 
TBP) can be made by heating the solution to ~ 100 oC for about 5 min in a water bath. 
The hydrogen peroxide stock solution is prepared freshly before the kinetic 
experiments. For a typical DHP A peroxidase kinetic reaction with the final hydrogen 

peroxide concentration at 1200 M. You can prepare the hydrogen peroxide stock 

solution by having 10 mL KPi buffer mixing with 7.4 L of 30% concentrated hydrogen 
peroxide solution (from Sigma-Aldrich).       
 
Mixing protocol 
Calculate the volume of each component (protein, substrate, buffer) you need for each 
kinetic assay, add the buffer to the cuvette first, then substrate solution and finally 
mixed with protein solution in the cuvette. The volume for hydrogen peroxide solution 

is fixed at 200 L and will be added in the end to initiate the reaction. Place the 
solutions in the cuvette, wait 3 min for it to reach the desired temperature. Make a new 
file for each kinetic assay and set the experimental parameters. When you are ready to 
start the reaction, press F7 to start the experiment while at the same time add the H2O2 
solution, mixing the solution once or twice quickly with the syringe tip.  
Analysis  
Data transfer 
The data can be extracted from the software by copying and pasting into an Excel 
spreadsheet. The spreadsheet can be transferred to your UNITY account using Secure 
Shell software. Secure Shell is a windows based program that is based on the LINUX sftp 
(secure file transfer protocol) command.  You will find the Secure Shell 3.2.9 Icon on the 
desktop. You can set up the path for transfer using the software. The procedure is 
shown on the website using the screen shots of the SSH software. 
Uploading the data into IgorPro 
To upload data from an Excel spreadsheet into IgorPro the easiest method is the cut and 
paste method. You may open the Excel spreadsheet and select the rows and columns 
you would like to analyze. Then these values can be copied (<ctrl c>) and pasted (<ctrl v) 
into the table in IgorPro. When IgorPro is opened there is always a table presented as a 
default. When you paste the data into this table the data columns will have the labels 
wave0, wave1, wave2 etc. As long as you keep careful records there is no need to 
rename all of these columns. For example, if you have a typical spectroscopic data set 
with wavelengths from 400 – 600 nm, there will be 200 columns. It would be a bit 
painful to change the names of 200 data waves. If you do need to change a name of a 
wave you can do it on the command line of IgorPro. 
 Rename wave0 time 
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 Rename wave1 lamda400 

Note that IgorPro waves must have names that begin with a letter and not a number.   
Plot all the time courses of the absorbance at the given wavelength. Select all the 
corresponding absorbance waves as the y axis and the only wave “time” as the x axis at 
Windows -> New Graph and go ahead to plot them. 
Fitting the kinetic data using the method of initial rates 
Igor has a number of standard fitting functions. The fit to a straight line is a standard 
fitting function. As you have learned, fits to a straight line are known as linear least 
squares fitting and there is a unique solution for the slope and intercept. In this problem 
the intercept is not important for the kinetic analysis, but the slope tells you how A 
changes with time. Once you know this you will need to convert A to [P], the change 
in concentration. For this step you will use Beer’s law. 
To fit to a straight line you will need to plot the kinetic data and then use the cursors to 
select the first few points (6 to 10 points). The data are only linear over a very small 
range of time. Make sure that you have selected a short enough range that it is linear. 
However, you will need a minimum number of points to make the fitting meaningful. 
Experience suggests that 6 points is the minimum. 
The procedure for plotting, selecting data with the cursors and defining the fitting 
function are given on the website. Use the website to guide you in this step. Record the 
values of your fit for each of your kinetic runs at each of your concentrations. Make a 
table with the following entries 

 A1/ t A2/ t A3/ t A/ t> A/ t) 

[S]1 0.00478 0.00512 0.00499   

[S]2 0.00839 0.00812 0.00806   

…      

 
Constructing and fitting the Michaelis-Menten plot 
Once you have obtained the average values of the initial rate, V0 = A/ t>, for each 
substrate concentration you will need to construct a plot of the initial rates vs. substrate 
concentration, V0 vs. [S]. This is the Michaelis-Menten plot. The data in this plot will be 
fit using non-linear least squares fitting. In IgorPro this can be done by adding a macro 
to the software. IgorPro has a number of standard fitting functions for non-linear least 
squares fitting, but the Michaelis-Menten model is not one of them. You may use the 
macro below, which is available for download on the website. You will need to add 
these lines of text to the Procedure Window of IgorPro. When you close the Procedure 
Window it will automatically compile the macro and make it available in the Analysis 
menu. You may select this fitting function in that menu.  
Non-linear least squares fitting differs from least squares in that an initial guess for the 
parameters is required. In the case of M-M fitting you will need to input the Vmax and Km 
values. How can you “guess” these values? It seems a bit tautological since the whole 
point of fitting is to obtain the values. In the case of M-M you can estimate Vmax since 
that is the limiting value of the initial rate at large [S] concentration. You can inspect the 
plot and either simply use the largest value or perhaps a somewhat larger value based 
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on your intuition of how much the curve is increasing over the observable range. Km can 
be estimating finding the value of [S] the corresponds to Vmax/2, since Km = [S] gives 
Vmax/2 in the M-M formula. You will still need to do the fitting in order to obtain 
accurate values of these parameters. The fitting menu allows you to input an estimated 
value of the standard deviation (also called the weight). When this is entered the fitting 
function will return a value of chi-squared, 2. In non-linear least squares fitting this is 
the figure of merit that is most frequently used to indicate the goodness of it. If the 
errors are properly estimated a good fit should have 2 = 1. 
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The clock reaction 

 
In this project the kinetics of the following redox reaction are studied in aqueous 
solution: 
 

S2O8
2-    +    2 I-      I2     + 2 SO4

2- 

persulfate + iodide  iodine + sulfate 
 
A small amount of starch in the solution will produce and adduct with iodine, which 
results in an intense blue color. To follow the kinetics of the reaction a small amount of 
a sacrificial reducing agent, thiosulfate, will be added. This reacts very quickly with any 
liberated iodine to form back iodide: 

2I-    +     S4O6
2-  I2    +    2S2O3

2- 

iodide + tetrathionite  iodine + thiosulfate 
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As long as the thiosulfate has not been depleted the blue color will therefore not 
appear. In this time the concentrations of both iodide and persulfate are essentially 
constant. Iodide is being formed back, whereas persulfate is in excess. That means that 
the first reaction is running at constant rate and this rate can be measured from the 
amount of thiosulfate originally present and the time it takes for it to be consumed, i.e. 
the time it takes for the blue color to appear. This time can be measured with a 
stopwatch. 
 
The rate of the reaction can be studied as a function of a variety of variables, such as the 
initial concentrations of iodide, persulfate, thiosulfate, temperature, ionic strength and 
the presence and concentration of a catalyst like Cu2+ or Fe2+. 
The hydrolysis of ethyl acetate 
 
The hydrolysis reaction of ethyl acetate can be studied by monitoring the conductivity of 
an aqueous solution of the ester with various amounts of sodium hydroxide. 
 

EtAc + OH- (+Na +)EtOH + Ac- (+Na +) 
 

Because the mobility () of the acetate ion is lower than that of the hydroxyl ion, the 
conductivity of the solution will decrease as the reaction progresses. The sodium 
concentrations does not change but gives a constant contribution to the conductivity 

Depending on the extent of reaction , the conductivity will follow the expression: 
 

  = {Na + ac() +OH(1-)}[Na+] = {Na +OH + (ac -OH)()}[Na+] 
 

Thus =0 = {Na +OH) [Na+] 

and =1={Na +Ac) [Na+] 
 
When we measure the conductivity as a function of time, we can deduce the extent of 
reaction from: 

(t) ={(t) - =0}/{=1-=0} 
 

Unfortunately the extremes =0 (no reaction) and =1 (reaction complete) cannot be 

achieved and so the two values =0 and =1 have to be estimated using a 
parameterized regression. 
 
The reaction is reportedly first order in both [OH-] and [EtAc], so that integrated rate 
laws can be used to fit the data. 
 
The rate of the reaction can be studied for various concentrations [OH-] and [EtAc] as 
well as the temperature. From a latter study an energy of activation can be derived. 
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The reaction of iodide and iodate 

 
At low pH iodide and iodate undergo a redox reaction to form iodine in aqueous 
solution 
 

6H+ + IO3
- + 5I-  3I2 + 3H2O 

 
The reaction rate can be studied photometrically by monitoring the absorption A in the 
visible using a UV/VIS spectrometer as a function of time 
 
The method of initial rates is used, by extrapolating the slope of the A(t) data back to 
the origin. The rate of the reaction can be studied as a function of the initial 
concentrations of iodide, iodate, the pH and temperature. 
 

The binary phase diagram of organic solvents. 

 
Many organic solvents –such as cyclohexane, mesitylene or octane- are perfectly 
miscible at room temperature. MDSC will be used to study the low temperature 
behavior of a binary mixture of two such solvents. In many cases, when the temperature 
is dropped to –90oC, the solvents will be present as separate solids with very limited –if 
any- mutual solid solubility. The calorimeter will be used to follow the melting behavior 
of such mixtures and a phase diagram constructed. The van ‘t Hoff relationship that 
describes melting point depression will be used to fit the liquidus lines of the diagram as 
a check on the assumption that the liquid miscibility is ideal and the solid solubility 
negligible. If applicable, solid-solid transitions will also be studied. 
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Differential scanning calorimetry of polyols 
 

 Introduction 

 
One of the most advanced applications of thermodynamics is Modulated Differential 
Scanning Calorimetry (MDSC).1  
 Calorimetry: any measurement of heat (flow). (Since 18th century) 

Differential: the difference between the sample and a reference is measured. 
(Early 20th) 

Scanning: the calorimeter is carefully engineered such that a temperature 
program can be imposed. Traditionally this program is a linear 

ramp: T(t) = T(0) + .t  with constant heating rate . (late 60’s)  
Modulated: the temperature program T(t) consists of a linear ramp plus a 

sinusoidal oscillation of a certain frequency, (1992) 

 i.e. T(t) = T(0)+ t + sin(t) 
 
 
 
 
 
 

 
 
 
The sample and the (empty) reference pan both sit on a slab of a material of known, low 
heat resistance Rq (i.e. high heat conductivity). As the oven program T(t) heats both 
sample plans up, heat conduction makes heat flow from the slab into both pans. If the 
two heat flows are not equal, the difference will cause a small temperature difference 

T across the slab, according to the (Newton’s) caloric version of Ohm’s law: 
 

  T= K dq/dt   (cf.:  V = R.I = R. dQ/dt;  where Q is charge). 
 
The value of K of the slab is measured by running a calibration sample upon installation 

of the instrument. By measuring T across the slab2, we can then measure the 
difference in heat flow into the sample compared to the reference. Because the 
difference is taken, the heat flow due to the two aluminum containers (more or less) 
cancels. As long as the sample does not undergo changes (melting, decomposing, 

                                                      
1 Unfortunately all manufacturers of this type of device try to lay commercial claim to their own acronym. 
The technique is also known as AC DSC, ADSC, TMDSC, MTDSC etc. 
2 Actually the formula for T is a bit more complicated as it also involves heat capacities for the slab and 
the pans, but that too can largely be calibrated out. 

T 

dq/d
t 

V(t) 

V 

R R 

dQ/
dt 

T(t) 
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reaction etc) the heat flow should be proportional to the heat capacity Cp of the sample 
at T(t): 

 T = K dq/dt = K Cp. dT/dt    (= K.Cp.) 
To measure Cp therefore we need to do two experiments (sample and calibration 

sample) at the same constant heating rate (). Unfortunately, there are few more 
elements in the circuitry, e.g. the heat conductivity of the sample, the contact resistance 

between the sample and the slab and the fact that the temperature difference T is 
measured at a finite distance from the actual samples. In general the relationship will 
become: 
 

 T = K. dq/dt  = K Cp . dT/dt + f(T,t) 
 
Once the system reaches a stationary state, the function f(t,T) tends to become a 
constant, so we could overcome the problem by doing experiments at different values 
of dT/dt and compare. This is very tedious. 
In the modulated experiment one run suffices however. The instantaneous heating rate 
dT/dt oscillates: 

T(t) = T(0) + t +sint 

dT/dt =   +  +cost 

You could say you are experimenting at a range of heating ranges [] at once. The 
heat flow will in general also fluctuate with the same frequency. By comparing the 
amplitude of the two oscillations, Cp’s can be measured directly. One initial calibration 
run (sapphire) at installation suffices.  
 
Because the heat flow dq/dt oscillates, we can distinguish an overall trend (total heat 
flow) and the amplitude of the oscillation (the reversing heat flow).  This means that we 
can decompose the dq/dt response into two components a reversing or capacitive and a 
non-reversing or kinetic one. The latter is calculated from the difference between the 
total and the reversing heat flow. 
 
The term reversing is related to the thermodynamic term reversible but they are not 
identical: a process is reversing if it is reversible on the time scale of the oscillations or 
faster. A non-reversing process is either reversible but too slow or simply irreversible (at 
all time scales). 
 
Often the graph of Cp (T) is quite boring: a gently sloping, almost flat base line. Things 
get more interesting as the sample undergoes change, e.g. in a phase transition. 
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Phase transitions in polymers 

 
We will compare two polymers with similar chemical structures, but rather different 
thermal behavior. They are both made from a multifunctional alcohol (e.g. glycerol) and 
an organic oxide: 
 
 
  
  
  
 
Glycerol +   propylene oxide  ->  polyol (polyglycol)  PPG 
       ethylene oxide     PEG 
 
We will compare R=H (polyethylene glycol) PEG and R=CH3 (polypropylene glycol) PPG 
 

Losing degrees of freedom 

 
The latter is a liquid that solidifies into a glass at low temperatures. Although the 
molecules do not order during the glass transition, certain degrees of freedom do 
become inactive. The loss of degrees of freedom (DF) implies a change in Cp. The result 
is a shift in base line in the thermogram, usually broadened out to a sigmoidal shape. 
Glass transitions are typically reversing in character. 
 

Losing degree of order 

 
On the other hand, when a PEG melt is cooled down from high temperatures, it 
crystallizes. This means that there is not just a loss of DF, but also an ordering of 

molecules into a regular lattice. On top of the Cp effect there is also a sudden change in 

entropy S corresponding to the loss of order. Because we are at equilibrium at the 
melting point Tm we can say 
 

∆𝐺 = 0 
∆𝐺 =  ∆𝐻 − 𝑇𝑚∆𝑆 = 0 

∆𝐻 = 𝑇𝑚∆𝑆 
 
 
Both Tm and ΔS are finite, thus there must be a sudden jump in enthalpy, known as the 

enthalpy of fusion Hf. A finite amount of heat qlatent=Hf is either liberated (solidifying) 
or taken up (melting) instantaneously at one temperature.  The heat capacity (that we 
are essentially measuring because it is linked to the heat flow) is related to the enthalpy 
by a derivative: 

OH 

OH 

OH + 
R 
 

OCCROCCROCCROCCROCCROH 

OCCROCCROCCROCCROCCROH 

OCCROCCROCCROCCROCCROH 
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This means that the measured heat flow dq/dt should go to infinity (T=zero!) but for 
instrumental reasons the ‘spike’ in the heat flow actually becomes broadened into a 
peak. The peak area corresponds to qlatent. 
 

The broadening process causes the size and the width of the peak to change with . The 
onset temperature is however not very sensitive to these effects. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Melting events are typically endotherms, but they can be so instantaneous that they are 
over before one dT/dt oscillation has been completed. In that case MDSC cannot 
dissolve the heat flow into reversing and non-reversing properly. The total heat flow can 
still be used, however. In polymers, melting often occurs over a broader range and 
MDSC can then sometimes be helpful in unraveling what is happening, but we will not 
go into details. 
 
When a liquid is cooled to below its melting point it sometimes fails to crystallize, in that 
case we get a supercooled liquid.  As the slope of the H function for the liquid is 
generally steeper than that of the crystalline solid this leads to a paradox, named after  
Kauzmann. The extrapolated line for the supercooled liquid should intersect the line for 
the solid at what is known as the Kauzmann temperature TK. However this leads to a 
physically impossible situation where a disordered liquid would be denser and the 
interaction inside it stronger than in the packed crystal. This cannot be. Therefore the H-
curve must at some point flatten out before the Kauzmann temperature TK is reached. 
The flattening however implies a loss of Cp, i.e. a loss of degrees of freedom. The 
temperature at or around which this happens is known as the glass transition point Tg. 
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For a crystalline solid like PEG we can calculate TK once we have determined Tm, ΔH and 
ΔCp.  Assuming that heat capacities are constant over the temperature range we can 
write 
 
 Hliquid = Hliquid

o + Cp,liquid.T 
 
 Hsolid = Hsolid

o + Cp,solid.T 
 
Subtracting these two expressions, we find an expression that links the three values we 
measure at the melting point: 
 
 ΔH =Δ Ho + ΔCp,.T 
 
From this we can calculate TK. 

Glass transitions 

 
Glass transitions are in a sense simpler than crystalline ones: there is df-loss but no 
ordering (entropy-loss). They also have a complication; they are time (or frequency) 
dependent. This puts them at the edge of the (static) classical thermodynamics you 
learn in CH433. 
 
 If the melt is cooled down slowly, the glass transition occurs at a lower temperature and 
the resulting glass will be denser than if you quench the melt rapidly. Schematically we 
can represent the enthalpy of the liquid and glassy states as follows: 
 
 
 
 
 
 
 
 
 
 
If we cool down fast, but let the sample ‘age’ just below Tg, the system slowly relaxes to 
the lower enthalpy. If we then heat up fast, it ‘overshoots’ the ‘slow’ Tg and the missing 
enthalpy is ‘recovered’ at the upper ‘fast’ Tg point. In classical DSC this will look like an 

endothermic peak on top of the Cp sigmoid. It has often misled people into believing 
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they were dealing with a crystalline solid that melts. MDSC, however, nicely resolves the 
two effects: the recovery peak is non-reversing whereas the glass transition is reversing, 
so we will see the sigmoid and the recovery peak on two different ‘channels’. 
 

 Experiment 

 
 
The instructor will show you how to open the instrument. Make sure the sample 
chamber is at ca. room temperature before opening the cover via the touch screen. 
Note the position of the reference pan and the sample pan. 
 
First make sure the N2 flow is on 20 psi. Make sure the RCS unit is running. (See the 
green switch on the refrigeration unit.) First prepare the PEG sample and make sure to 
get it running. In the mean time your partner can clean the syringe. The PPG sample can 
be prepared once the PEG is running 

PEG 

 
Carefully weigh ca 4-6 mg of PEG sample into a hermetic pan, put on a lid and crimp 
them together. The instructor will show you how by crimping an empty reference pan. 
Record the weights.  
 
Make sure not to touch the pans with fingers, use the precision tweezers. (Don’t lose or 
damage the tweezers, put them back in the box afterwards). 
 
Run conditions: 
 

1. Equilibrate at 200C. 

2. Modulate temperature 0.5K and a period of 60 seconds (i.e. =2/60 s-1).  
3. Isothermal for 3 min 
4. Ramp at 5o/min to 1000C 

 

Data work up. 

 
Once the isothermal statement is executed you can observe the data in the analysis 
software. Open your file and do a right-hand click on the graph. Select signals and 
change the selection boxes to modulated temperature (the signal you impose) and 
modulated heat flow (the raw signal that you measure). Go to graph and on the bottom 
of the dropdown opt for refreshing data. You will see the sinusoidal pattern of the 
signals. The software will separate that into two signals: the overall Heat Capacity (the 
trend line through the oscillations) and the reversing heat capacity (rev Cp). The latter 
gives a better measurement of the Cp anywhere but at the phase change. 
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Once the melt event has been observed, change the signal to heat capacity and rev Cp. 

Click the reversing Cp curve. Use the  icon above the data to measure the change in Cp 
before and after the phase transition. Let the instructor explain what this value means 
and how to put it in the diagrams you are supposed to include in your report. Then 
integrate the peak of the other curve (total heat capacity) with the first whitish 
integration icon.  
 

PPG 

 

For PPG you can use the Hamilton syringe to bring a drop of ca 10 l in the pan. Make 
sure the syringe is clean and cry (use water and acetone, then blow dry with Ar). Run 
against empty pans. Do weigh the sample! 
 
Run conditions: 
 
For PPG: Use MDSC program.  

1. Equilibrate at –92oC. 

2.  Modulate with amplitude 0.5K and a period 2/ of X seconds  
3.  isothermal for 3 minutes  
4.  ramp at 3K/min to –45oC.  
5. Equilibrate at –92oC. 

6.  Modulate with amplitude 0.5K and a period 2/ of Y seconds  
7.  isothermal for 3 minutes  
8.  ramp at 3K/min to –45oC.  
 
Use X=60, Y=40 or X=70, Y=50 seconds 

 

 Methods of Analysis 

 

For PEG, include a graph of the total heat flow. Report Hfusion and the (onset) 
temperature of fusion by making a schematic drawing of the enthalpy H as a function of 
temperature for the PEG fusion event. Compare your diagram with the above schematic 
diagram for the glass transition and prepare a diagram for Cp versus T in both cases. 

Calculate the Sfusion for PEG.  

Estimate the Cp between the liquid and the crystalline solid for PEG from the reversing 

Cp and use H and Cp to calculate the Kauzmann temperature for this compound. 
 
For PPG : Include a graph for the total, reversible and non-reversible Cp for one of the 
runs, also include an overlay graph of the reversible Cp’s for the two frequencies. Report 

the change in Cp and Tg for the two values of  (Table). Discuss the trend in Tg you see 
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in terms of the time dependence of the glass transition. Include a graph of the non-

reversible heat-flow and determine H of relaxation. 
 
 
Sketch a diagram for H and Cp as a function of temperature and  
 
Why is the thermal behavior of these two related materials so different? What kinds of 

degrees of freedom become inactive at Tg? Why does that correspond to a Cp?  

Compare the Cp for PEG and PPG. And compare Hfusion to Hrecovery. Which comparison 
is closer and why is that? 
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