
Hydrogen molecule ion wave functions
We use this example because it can be solved exactly.
The spatial wavefunction on each of two H atoms forms
linear combinations:

ΨH1sA or 1sA ΨH1sB or 1sB

A B

e-

R

rA rB

The atomic wave functions form linear combinations 
to make molecular orbital wave functions.

Ψ± = 1sA ± 1sB



The hamiltonian for H2
+ is:

Given above are the kinetic energy operators for the nuclei 
A and B and for the electron e.  Also there are three 
potential energy terms, two attractive potential terms 
between the nuclei (A and B) and the electron and one 
repulsive term involving A and B only.  In order to proceed 
we will:
•Separate nuclear and electronic motion (Born-
Oppenheimer approximation)
•Convert to atomic units.

The hamiltonian for H2
+



The Born-Oppenheimer approximation states that electronic 
motion is much more rapid than nuclear motion and therefore 
the electrons see a static nuclear configuration.  This means:
• We can separate the nuclear kinetic energy terms in a 
separate Schrödinger equation.

• We can solve the electronic Schrödinger equation at fixed 
values of R.  For each value of R we will obtain a set of 
energy values for the various states of H2

+.  The plot of these 
energy values against R produces a potential energy surface 
for the molecule.

Separation of electronic and 
nuclear motion



After application of the B-O approximation the electronic 
hamiltonian becomes:

In atomic energy units we set

in the above equations.  The atomic unit of distance is the 
Bohr radius a0 = 0.529 Å.  The atomic unit of energy is the 
Hartree which is equal to the twice the ionization energy of 
the hydrogen atom.  The Hartree is defined as

Atomic Units



In atomic units the hamiltonian takes on a simple form.

where rA and rB are the distances of the electron from nucleus 
A and B, respectively.  The Schrödinger equation for H2

+ is:

We can use linear combinations of atomic wavefunctions for our 
molecular wavefunctions.

where A and B represent the 1sA and 1sB wave functions, 
respectively.  Given that the nuclei are identical we must have 
|c1| = c2.  Thus, our linear combination becomes:

for the bonding and 

For the anti-bonding orbital. 



The hamiltonian for H2
+

The potential involves three particles, one electrons and 
two protons.  In atomic units it is given by

V = – 1
r A

+ 1
rB

+ 1
R

The hamiltonian includes the kinetic energy terms  for the 
electron only since the Born-Oppenheimer approximation 
allows separation of nuclear and electronic motion.  The 
internuclear distance R is fixed and the nuclear kinetic 
energy is zero.

H = – 1
2∇

2 + V



Setting up the energy calculation for H2
+

The average energy is obtained by evaluating the 
expectation value:

The denominator gives the required normalization.

E ′ =
Ψ *HΨdτ

Ψ *Ψdτ

Ψ *Ψ dτ = 1sA
* +1sB

* 1sA +1sB dτ

= 1sA
* 1sAdτ + 1sA

* 1sBdτ+ 1sB
* 1sBdτ+ 1sB

* 1sAdτ

= 1 + S + 1 + S, where 1sA
* 1sAdτ = 1 and 1sA

* 1sBdτ = S



Normalized LCAO wave functions
The LCAO wave functions for the H2

+ molecule ion are

Ψ + = 1
2(1 + S)

1sA + 1sB

Ψ – = 1
2(1 – S)

1sA – 1sB

and

These wave functions are orthogonal and normalized.



Energy levels in H2
+

Explicit substitution of the hamiltonian gives

E = Ψ *HΨdτ = Ψ * – 1
2∇

2 – 1
r A

– 1
rB

+ 1
R Ψdτ

= 1sA
* – 1

2∇
2 – 1

r A
– 1

rB
+ 1

R 1sAdτ

+ 1sA
* – 1

2∇
2 – 1

r A
– 1

rB
+ 1

R 1sBdτ

+ 1sB
* – 1

2∇
2 – 1

r A
– 1

rB
+ 1

R 1sBdτ

+ 1sB
* – 1

2∇
2 – 1

r A
– 1

rB
+ 1

R 1sAdτ



Energy levels in H2
+

= 1sA
* E1s – 1

rB
+ 1

R 1sAdτ+ 1sA
* E1s – 1

rB
+ 1

R 1sBdτ

+ 1sB
* E1s–

1
r A

+ 1
R 1sBdτ+ 1sB

* E1s – 1
rB

+ 1
R 1sAdτ

Since
– 1

2∇
2 – 1

r A
1sA =E1s1sA

– 1
2∇

2 – 1
rB

1sB =E1s1sB

These are just
hydrogen atom
Schrödinger 
equations



Energy levels in H2
+

= E1s 1+S + 1sA
* – 1

rB
+ 1

R 1sAdτ + 1sA
* – 1

rB
+ 1

R 1sBdτ

+ E1s 1+S + 1sB
* – 1

r A
+ 1

R 1sBdτ+ 1sB
* – 1

rB
+ 1

R 1sAdτ

To further evaluate these two-center integrals we define the
Coulomb integral

J = 1sA
* – 1

rB
+ 1

R 1sAdτ = –
1sA

* 1sA
rB

dτ + 1
R

and the exchange integral

K = 1sB
* – 1

rB
+ 1

R 1sAdτ = –
1sB

* 1sA
rB

dτ + S
R



Energy levels in H2
+

E+
′ =

Ψ +
*HΨ +dτ

Ψ +
*Ψ +dτ

=
E1s2 1 + S + 2 J + K

2 1 + S

E–
′ =

Ψ –
*HΨ –dτ

Ψ –
*Ψ –dτ

=
E1s2 1 – S + 2 J – K

2 1 – S

E+′ =E1s + J + K
1 + S

E–′ =E1s + J – K
1 – S



Diagram of H2
+ energy levels

E1sE1s

bonding

anti-bonding

J + K
1 + S

J – K
1 – S

Note that the anti-bonding level is more destabilizing 
than the bonding level is stabilizing.



Ψ + = 1
2(1 + S)

1sA + 1sB Ψ – = 1
2(1 – S)

1sA – 1sB

Bonding and anti-bonding orbitals



Significance of the overlap integral

Overlap region

A B

The wave functions 1sA and 1sB are not orthogonal
since they are centered on different nuclei.  The 
overlap integral S is a function of the internuclear
distance.



Distance dependence of terms 
that make up the energy

The energy, overlap and other integrals that 
describe the system are all a function of distance.
E(R) is the distance dependent energy (surface)
S(R) is the distance dependent overlap
J(R) is the distance dependent Coulomb integral
K(R) is the distance dependent exchange integral



. .
rA rB

RA B

In order to solve the H2
+ ion analytically we can use integration 

in elliptical coordinates.  This is shown schematically below.

To transform the coordinates we use the following

within the following limits

Elliptical coordinate system



If the radius is given in units of Bohr radii (a0 = 0.529 Å) the 
hydrogen atom 1s wave function is:

for atom A                               and

for atom B in spherical polar coordinates.  To solve the 
following integrals, we can solve for rA and rB in terms of λ
and µ.  
rA = Rλ – rB, rB = rA – Rµ
rA = Rλ – rA + Rµ
2rA = R(λ + µ), 2rB = R(λ - µ)
The volume element is

Wave functions and variables



The normalization constant in elliptical coordinates is 
determined from the integral:

Since 2rA = (λ + µ)R we have 

The result is:

so that,

Normalization



The overlap integral is distance dependent. In the elliptical 
coordinate system it can be solved for an analytical expression
in terms of the internuclear distance, R.
The wave functions are normalized. The overlap integral S is

where

Using the above definitions this integral can be recast as

The overlap integral S(R)



Let u = -Rλ then du = -Rdλ and dλ = -du/R. 

The second term integrates to –e-R, but the first requires 
integration by parts.

The integral is evaluated at minus infinity (it is zero there) 
and at –R.



The Coulomb integral is:

which can be resolved to

and then cast into the elliptical coordinate system

The Coulomb integral J(R)



Recognizing that (λ2 – µ2) = (λ + µ)(λ – µ) we can rewrite 
this integral as.

which is expanded to

Using the fact that integration by parts yields

The Coulomb integral J(R)



The integrals evaluate to



Therefore

The Coulomb integral J(R)



The exchange integral can likewise be evaluated.

The Exchange integral K(R)



The integral that comprises the first term in K(R) is

Making substitutions as above

which, when substituted into the initial expression for K gives

The Exchange integral K(R)



Potential energy surface for H2
+

Using elliptical integrals that S, J, and K integrals
can be solved analytically to yield the following PES.

S(R) = e–R 1 + R + R2

3

J(R) = e–2R 1 + 1
R

K(R) = S
R – e–R 1+R
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