Predicting the vibrational spectra of SF₆

Using a Cartesian basis determine the irreducible Representations of the normal modes of vibration in SF_6 .

The O_h point group used for analysis

O _h	E	8C ₃	6C ₂	6C ₄	3C ₂	i	6S ₄	85 ₆	3σ _h	6σ _d	linear	quadratic
A _{1g}	1	1	1	1	1	1	1	1	1	1		x ² +y ² +z ²
A_{2g}	1	1	-1	-1	1	1	-1	1	1	-1		
Eg	2	-1	0	0	2	2	0	-1	2	0		x ² -y ²
T _{1g}	3	0	-1	1	-1	3	1	0	-1	-1	(R_x, R_y, R_z)	
T _{2g}	3	0	1	-1	-1	3	-1	0	-1	1		(xz, yz, xy)
A _{1u}	1	1	1	1	1	-1	-1	-1	-1	-1		
A _{2u}	1	1	-1	-1	1	-1	1	-1	-1	1		
Eu	2	-1	0	0	2	-2	0	1	-2	0		
T _{1u}	3	0	-1	1	-1	-3	-1	0	1	1	(x, y, z)	
T _{2u}	3	0	1	-1	-1	-3	1	0	1	-1		

Rotations in the O_h point group

Cartesian basis has 3N degrees of freedom

Determine the reducible representation

O _h	E	8C ₃	6C ₂	6C ₄	3C ₂	i	6S ₄	85 ₆	3σ _h	6σ _d
Γ_{tot}	21	0	-1	3	-3	-3	-1	0	5	3
Γ_{F}	18	0	0	2	-2	0	0	0	4	2
$\Gamma_{\sf S}$	3	0	-1	1	-1	-3	-1	0	1	1

$$\Gamma_{F} = A_{1g} + E_{g} + T_{1g} + T_{2g} + 2T_{1u} + T_{2u}$$

 $\Gamma_{S} = T_{1u}$

Note that the dimension of the sums of the S and F atoms are 3 and 18, respectively, consistent with the starting Cartesian basis.

The O_h character table can be used to identify the translations (x,y,x) and rotations (R_x , R_y , R_z).

 $\Gamma_{\text{trans}} = T_{1u}$

$$\Gamma_{rot} = T_{1g}$$

$$\Gamma_{vib} = A_{1g} + E_g + T_{2g} + 2T_{1u} + T_{2u}$$

There are only 5 normal modes because the symmetry of the octahedral geometry of the molecule.

Only the T_{1u} modes are infrared active. The A_{1g} and T_{2g} modes are Raman active. Only the A_{1g} mode is Franck-Condon active.