Predicting the SALCs of SF₆

Using a 2p-orbital basis for the fluorine atoms and considering only the 3s- and 3p-orbitals for sulfur. Write down the SALCs of the F atoms. Match those SALCs with orbitals of appropriate symmetry on sulfur. Classify the SALCs as either bonding or non-bonding. NOTE: The bonding SALCs assume that the phase of the orbital on sulfur is matched to the SALC. Reversing the sign on sulfur will give the anti-bonding combination. Note that it is convenient to divide the F p-orbitals into σ -bonding and π -bonding sets.

Reducible representation of F p-orbital basis

 $p-\sigma$ set

 $p-\pi$ set

	Е	8C ₃	6C ₂	6C ₄	3C ₂	Ι	$6S_4$	$8S_6$	$3\sigma_h$	$6\sigma_{d}$
Γ_{σ}	6	0	0	2	2	0	0	0	4	2
Γ_{π}	12	0	0	0	-4	0	0	0	0	0

Reducible representations of S s and p-orbitals

Decomposition of the $\sigma\text{-set}$

Γ_{σ}	Е	8C ₃	6C ₂	6C ₄	3C ₂	I	$6S_4$	$8S_6$	$3\sigma_{h}$	$6\sigma_{d}$	Product
A _{1g}	6	0	0	2	2	0	0	0	4	2	48/48=1
A _{2g}	6	0	0	-2	2	0	0	0	4	-2	0
Eg	12	0	0	0	4	0	0	0	8	0	48/48=1
T _{1g}	18	0	0	2	-2	0	0	0	-4	-2	0
T _{2g}	18	0	0	-2	-2	0	0	0	-4	2	0
A _{1u}	6	0	0	2	2	0	0	0	-4	-2	0
A_{2u}	6	0	0	-2	2	0	0	0	-4	2	0
E_{u}	12	0	0	0	4	0	0	0	-8	0	0
T _{1u}	18	0	0	2	-2	0	0	0	4	2	48/48=1
T_{2u}	18	0	0	-2	-2	0	0	0	4	-2	0

 $\Gamma_{\sigma} = A_{1g} + E_g + T_{1u}$

Decomposition of the π -set

Γ_{π}	Е	8C ₃	6C ₂	6C ₄	3C ₂	I	$6S_4$	$8S_6$	$3\sigma_h$	$6\sigma_d$	Product
A _{1g}	12	0	0	0	-4	0	0	0	0	0	0
A_{2g}	12	0	0	0	-4	0	0	0	0	0	0
Eg	24	0	0	0	-8	0	0	0	0	0	0
T _{1g}	36	0	0	0	4	0	0	0	0	0	48/48=1
T _{2g}	36	0	0	0	4	0	0	0	0	0	48/48=1
A _{1u}	12	0	0	0	-4	0	0	0	0	0	0
A_{2u}	12	0	0	0	-4	0	0	0	0	0	0
E_{u}	24	0	0	0	-8	0	0	0	0	0	0
T_{1u}	36	0	0	0	4	0	0	0	0	0	48/48=1
T_{2u}	36	0	0	0	4	0	0	0	0	0	48/48=1

$$\Gamma_{\rm p} = \mathsf{T}_{\rm 1g} + \mathsf{T}_{\rm 2g} + \mathsf{T}_{\rm 1u} + \mathsf{T}_{\rm 2u}$$

The σ -bonding set has two possible sets of SALCs based on the correspondence of both the S and F atoms. These are $A_{1\alpha}$ and T_{1u} . The SALCs for each are shown below.

$$a_{1g} = \frac{1}{\sqrt{6}} \left(p_1 + p_2 + p_3 + p_4 + p_5 + p_6 \right)$$

$$t_{1u}(1) = \frac{1}{\sqrt{2}} (p_1 - p_3)$$
$$t_{1u}(2) = \frac{1}{\sqrt{2}} (p_2 - p_4)$$
$$t_{1u}(3) = \frac{1}{\sqrt{2}} (p_5 - p_6)$$

There is also a set of T_{1u} orbitals of π -symmetry according to the analysis. This is an example of the T_{1u} combination that leads to bonding for the π -symmetry SALCs. There are three of these orbitals.