Projection operator method

The projection operator method is used to generated symmetry adapted linear combinations in a basis.

One needs to identify a symmetry-related set of objects (i.e. orbitals, bond vectors, bond angles etc.) that have been determined to have a relevant irrep in a decomposition.

Then one needs to choose one representative member of of the symmetry related set. One can construct a table showing how the symmetry operations transform the representative member.

One can then use the coefficients of the irreps as coefficients for the transformed members of the symmetry-related set.

Example: benzene π -orbitals

We can use the benzene orbitals as an example. We can generate a reducible representation of the 6 p-orbitals of benzene. We can decompose that reducible representation into irreps (basis vectors) in the D_{6h} point group. Then we can form symmetry adapted linear combinations using the projections of a representative orbital of the set of 6.

Here we will simply assume the result for the analysis.

$$\Gamma_{\pi} = b_{2g} + e_{1g} + a_{2u} + e_{2u}$$

We will construct a table. One important point is that we frequently can use the pure rotation subgroup to make our job easier. In D_{6h} this means that we will use only the 6 rotations shown in the next slides. This is all we need to generate the appropriate linear combinations.

Projection operator approach

The operation required to carry the reference p_1 orbital into any of the others.

Atom	Operation	a _{2u}	b _{2g}	e _{1g}	e _{2u}
p ₁	Е	1	1	2	2
p ₂	C ₆	1	-1	1	-1
P ₃	C ₃	1	1	-1	-1
p ₄	C ₂	1	-1	-2	2
p ₅	C_{3}^{2}	1	1	-1	-1
p ₆	C_{6}^{5}	1	-1	1	-1

Projection operator approach

The operation required to carry the reference p_1 orbital into any of the others.

Atom	Operation	a _{2u}	b _{2g}	e _{1g}	e _{2u}
p ₁	Е	1	1	2	2
p ₂	C ₆	1	-1	1	-1
P ₃	C ₃	1	1	-1	-1
p ₄	C ₂	1	-1	-2	2
p ₅	C_{3}^{2}	1	1	-1	-1
p ₆	C_{6}^{5}	1	-1	1	-1

Projection operator approach

The operation required to carry the reference p_1 orbital into any of the others.

Atom	Operation	a _{2u}	b _{2g}	e _{1g}	e _{2u}
p ₁	E	1	1	2	2
p ₂	C ₆	1	-1	1	-1
P ₃	C ₃	1	1	-1	-1
p ₄	C ₂	1	-1	-2	2
p ₅	C_{3}^{2}	1	1	-1	-1
p ₆	C_{6}^{5}	1	-1	1	-1

Once we have the projections we can use information from the character table to form the linear combinations that we call symmetry adapted linear combinations (SALCs).

Atom	Operation	a _{2u}	b _{2g}	e _{1g}	e _{2u}
p ₁	Е	1	1	2	2
p_2	C ₆	1	-1	1	-1
P ₃	C ₃	1	1	-1	-1
p_4	C_2	1	-1	-2	2
p ₅	C_{3}^{2}	1	1	-1	-1
p ₆	C_{6}^{5}	1	-1	1	-1

For example, we can see that the a_{2u} irrep has all 1's. The coefficient for each projected orbital is 1. We have The SALC $\Psi_{a_{2u}} = \frac{1}{\sqrt{6}}(p_1 + p_2 + p_3 + p_4 + p_5 + p_6)$

We continue using a similar approach for b_{2g} using the fact That the coefficients alternate 1 and -1 around the ring.

Atom	Operation	a _{2u}	b _{2g}	e _{1g}	e _{2u}
p ₁	Е	1	1	2	2
p ₂	C ₆	1	-1	1	-1
P ₃	C ₃	1	1	-1	-1
p ₄	C ₂	1	-1	-2	2
p ₅	C_{3}^{2}	1	1	-1	-1
p ₆	C_{6}^{5}	1	-1	1	-1

$$\Psi_{b_{2g}} = \frac{1}{\sqrt{6}}(p_1 - p_2 + p_3 - p_4 + p_5 - p_6)$$

$$\Psi_{a_{2u}} = \frac{1}{\sqrt{6}}(p_1 + p_2 + p_3 + p_4 + p_5 + p_6)$$

For e_{1g} we see that some of the p orbitals have a coefficient of 2. We use that value exactly as given.

Atom	Operation	a _{2u}	b _{2g}	e _{1g}	e _{2u}
p ₁	Е	1	1	2	2
p ₂	C ₆	1	-1	1	-1
P ₃	C ₃	1	1	-1	-1
p ₄	C_2	1	-1	-2	2
p ₅	C_{3}^{2}	1	1	-1	-1
p ₆	C_{6}^{5}	1	-1	1	-1

$$\Psi_{e_{1g}} = \frac{1}{\sqrt{12}}(2p_1 + p_2 - p_3 - 2p_4 - p_5 + p_6)$$

For e_{2u} we have the same situation with some coefficients 1 (or -1) and some as 2.

Atom	Operation	a _{2u}	b _{2g}	e _{1g}	e _{2u}
p ₁	Е	1	1	2	2
p ₂	C ₆	1	-1	1	-1
P ₃	C ₃	1	1	-1	-1
p ₄	C_2	1	-1	-2	2
p ₅	C_{3}^{2}	1	1	-1	-1
p ₆	C_{6}^{5}	1	-1	1	-1

$$\Psi_{e_{1g}} = \frac{1}{\sqrt{12}}(2p_1 + p_2 - p_3 - 2p_4 - p_5 + p_6)$$

$$\Psi_{e_{2u}} = \frac{1}{\sqrt{12}} (2p_1 - p_2 - p_3 + 2p_4 - p_5 - p_6)$$