Decomposing Reducible Representations

In the determination of molecular orbital or vibrational
symmetries, a reducible representation is generated from an
appropriate basis set and then decomposed into its constituent
irreducible representations.
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a: the # of times that ith irrep appears in the

reducible representation

h: the order of the group

R: an operation of the group

g(R): the number of operations in the class

vi(R): the character of the Rth operation in the ith irrep
v(R): the character of the Rth operation in the
reducible representation



A general example of decomposition of
a reducible representation

A reducible representation can also be called a vector in the
space of the point group. In order to understand the application
of point groups for problems in chemistry we need to have
a general way to determine how the vector projects onto
the space of the group. The space is defined in terms of the
orthogonal basis vectors.

We consider an example in the C,, point group.
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We can think of this a vector in the space of C;, that has the
given lengths in each of the dimensions. We are treating the
point group symmetries as dimensions (which they are).




The vector can be composed by taking the dot product.
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In this standard expression the dot product is y;(R)x(R)
and g(R) is the degeneracy (i.e. the order of the class).

[eg=7 1 1o0fthe C;, point group, which has an order of 6.
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a(a,) = 1/6{(1)(1)(7)+(2)(1)(1)+(3)(1)(1)} = 1/6{12} = 2




[.g=7 1 1o0fthe C;, point group, which has an order of 6.
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a(a,) = 1/6{(1)(1)(7)+(2)(1)(1)+(3)(1)(1)} = 1/6{12} = 2

ae) = 1/6{(1)(2)(7) + (2)(-1)(1) + (3)(0)(+1)} = 1/6{12} = 2

Cs, 1E | 2C; | 30,
E 2 -1 0
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The reducible representation is decomposed as:
I.y=2a, +a,+2e

The results can be verified by adding the characters of the
irreps,

Cs, 1E 2C, 30,
23, 2 2 2
a, 1 1 -1
2e 4 -2 0

| { 1 1




Consider the effect of the operations of C,, on the vector of displacements.
The identity has no effect on any displacement, i.e.
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The rotation G, leaves unchanged only the component z,. Its full effect is

as follows:
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The effect of o (xz) is as follows:
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The effect of o (yz) is as follows:

£
2 Yo 2 Yo
H1 M)J{D Hz GU{YE} 20 Z
>

‘ /H‘M" \Vﬁ" H
AHp 2 XH i

o, (YZ)Xy1 = X % These results may be summarized in matrix form
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Our conclusion from the analysis of the Cartesian vectors
of H,O was that the reducible representation has the form.

C,, E C, G, G,
I 9 -1 3 1

cart

The decomposition of this reducible representation can
Be carried out in the same way using the dot product of
This vector with each of the basis vectors in the space.

We call the basis vectors irreducible representations. In C,,
the order of each class is 1 so g(R) = 1 always.
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The reducible representation of the Cartesian displacement
vectors for water was determined earlier and is given in the
following table as I'

[can(E) = 3N

CZV E C2 Oy CT'v

A, 1 1 1 z
A, 1 1 | -1 | R,
B, 1 | -1 | 1 | -1 [xR
B, 1 1 - 1 | yR,




C2v

runshift

1_‘x+y+z




Coy E C, Oy Gy
runshift 3 1 3 1
| BV 3 -1 1 1

I 9 -1 3 1




Cov E C, v Gy

A, 1 1 1 1 Z
A, 1 -1 -1 ,
B, 1 -1 1 -1 , Ry
B, 1 -1 -1 1 R,

| - 9 -1 3 1

Decomposition of I, yields,

a(ay) = /4 {(1)(D)(9) + (D(D(1) + (MH(DHE) + (D))} = 1/4 {12} =3
a(a,) = /4 {(1)()(9) + (D(DH(E) + DEDHE) + (DHEDD)} =14 {43 =1
a(b,) = 1/4{()(1)(®) + M(1)(-1) + M(D)B) + (D)D)} = 1/4 {12} =3
a(a,) = /4 {(1)()(9) + (DEDED + DEDE) + (D)D)} =14 {83 =2

1_‘cart: 381 T dy T 3b1 T 2b2



Of these 3N degrees of freedom, three are translational,
three are rotational and the remaining 3N-6 are the
vibrational degrees of freedom.

Thus, to get the symmetries of the vibrations, the
Irreducible representations of translation and rotation need
only be subtracted from I',;, but the irreps of rotation and
translation are available from the character table.
For the water molecule,
1_‘vib = 1_‘cart B 1_‘trans B 1ﬂrot
={3a, +a, +3b; +2b,} -{a; + b, + by} -{a, + by + Db}

=2a, +b;
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