
Ground state dipole moment for HF

Ground state dipole moment for HF

We consider the ground state dipole moment of HF. The model is based on the idea that there is an electronegativity difference between the H and F atoms that introduces an asymmetry into the molecule. If we consider the ground state molecular orbital:

$$\Psi_{\sigma} = \sin \theta_g \ 1s_H + \cos \theta_g \ 2p_{z,F}$$

where, for the ground state, the mixing angle $\theta_g = 40^o$. Assuming that the charge asymmetry is equal to the difference between the coefficient on $1s_H$ and $2p_{z,F}$ calculate the ground state dipole moment. You may assume that all resonance or overlap integrals are zero. You may also assume that the Coulomb integrals have the value:

$$e \int 1s_H z 1s_H dz = ez_H$$
 and $e \int 2p_{z,F} z 2p_{z,F} dz = ez_F$

which refers to one charge at position z_H and a charge at position z_F . Finally, the bond length is $|z_H - z_F| = 0.95 \,\text{Å}$.