Franck-Condon factor

We can use a T = 0 K approximation to calculate the Franck-Condon factor. In this approximation the molecules are in their electronic and vibrational ground state. Therefore, the FC transitions are from $0 \rightarrow 0$, $0 \rightarrow 1$, $0 \rightarrow 2$, etc. The formula for this approximation is given by:

$$FC = \sum_{n=0}^{\infty} \frac{S^n e^{-S}}{n!} \delta(\omega - \omega_{0-0}, -n\omega_{vib})$$

Calculate the "stick spectrum" by making a table showing the relative magnitude of the first 5 vibrational lines above 0-0'. You are given the follow information.

$$\omega_{0-0'} = 41,000 cm^{-1}$$
 $\omega_{vib} = 900 cm^{-1}$
 $S = 0.4$

Franck-Condon factor

Method: All of the FC terms are multiplied by e^{-S}. Calculate that value, which is also the 0-0' FC factor and then multiply by Sⁿ/n!. The corresponding transition energies shown in the table are given by

$$\omega = \omega_{0-0'} + n\omega_{vib}$$

n'	FC	ω
0	0.670	41000
1	0.260	41900
2	0.053	42800
3	0.007	43700
4	0.001	44600

Franck-Condon factor

Next we can draw a "stick spectrum" based on the calculation in the table.