Franck-Condon factor

We can use a $T=0 \mathrm{~K}$ approximation to calculate the Franck-Condon factor. In this approximation the molecules are in their electronic and vibrational ground state. Therefore, the FC transitions are from $0->0$, $0->1^{\prime}, 0->2^{\prime}$, etc. The formula for this approximation is given by:

$$
F C=\sum_{n=0}^{\infty} \frac{S^{n} e^{-S}}{n!} \delta\left(\omega-\omega_{0-0 \prime}-n \omega_{v i b}\right)
$$

Calculate the "stick spectrum" by making a table showing the relative magnitude of the first 10 vibrational lines above 0-0'. You are given the follow information.

$$
\begin{gathered}
\omega_{0-0^{\prime}}=17,000 \mathrm{~cm}^{-1} \\
\omega_{v i b}=300 \mathrm{~cm}^{-1} \\
S=3.2
\end{gathered}
$$

Franck-Condon factor

Method: All of the FC terms are multiplied by $\mathrm{e}^{-\mathrm{S}}$. Calculate that value, which is also the 0-0' FC factor and then multiply by $\mathrm{S}^{n} / \mathrm{n}!$. The corresponding transition energies shown in the table are given by

$$
\omega=\omega_{0-0^{\prime}}+n \omega_{v i b}
$$

$N->n^{\prime}$	$F C$	ω
$0->0^{\prime}$	0.0407	17000
$0->1^{\prime}$	0.1304	17300
$0->2^{\prime}$	0.2080	17600
$0->3^{\prime}$	0.2260	17900
$0->4^{\prime}$	0.1781	18200
$0->5^{\prime}$	0.1130	18500
$0->6^{\prime}$	0.0607	18800
$0->7^{\prime}$	0.0277	19100

Franck-Condon factor

Next we can draw a "stick spectrum" based on the calculation in the table.

