Franck-Condon factor

We can use a $T=0 \mathrm{~K}$ approximation to calculate the Franck-Condon factor. In this approximation the molecules are in their electronic and vibrational ground state. Therefore, the FC transitions are from $0->1$ ', $0->2$ ', $0->3$ ', etc. The formula for this approximation is given by:

$$
F C=\sum_{n=0,}^{\infty} \frac{S^{n} e^{-S}}{n!} \delta\left(\omega-\omega_{0-0,}-n \omega_{v i b}\right)
$$

Calculate the "stick spectrum" by making a table showing the relative magnitude of the first 5 vibrational lines above 0-0'. You are given the follow information.

$$
\begin{gathered}
\omega_{0-0^{\prime}}=21,000 \mathrm{~cm}^{-1} \\
\omega_{\text {vib }}=1600 \mathrm{~cm}^{-1} \\
S=1.5
\end{gathered}
$$

Franck-Condon factor

Method: All of the FC terms are multiplied by $\mathrm{e}^{-\mathrm{S}}$. Calculate that value, which is also the 0-0' FC factor and then multiply by $\mathrm{S}^{n} / \mathrm{n}$!. The corresponding transition energies shown in the table are given by

$$
\omega=\omega_{0-0^{\prime}}+n \omega_{v i b}
$$

$n \rightarrow n^{\prime}$	$F C$	∞
$0 \rightarrow 0^{\prime}$	0.223	21000
$0 \rightarrow 1^{\prime}$	0.335	22600
$0 \rightarrow 2^{\prime}$	0.251	24200
$0 \rightarrow 3^{\prime}$	0.126	25800
$0 \rightarrow 4^{\prime}$	0.047	27400

Franck-Condon factor

Next we can draw a "stick spectrum" based on the calculation in the table.

