Franck-Condon factor


Nuclear Displacement

## Franck-Condon factor

We can use a $T=0 \mathrm{~K}$ approximation to calculate the Franck-Condon factor. In this approximation the molecules are in their electronic and vibrational ground state. Therefore, the FC transitions are from $0->0$ ', $0->1^{\prime}, 0->2^{\prime}$, etc. The formula for this approximation is given by:

$$
F C=\sum_{n=0,}^{\infty} \frac{S^{n} e^{-S}}{n!} \delta\left(\omega-\omega_{0-0,}-n \omega_{v i b}\right)
$$

Calculate the "stick spectrum" by making a table showing the relative magnitude of the first 5 vibrational lines above 0-0'. You are given the follow information.

$$
\begin{gathered}
\omega_{0-0^{\prime}}=21,000 \mathrm{~cm}^{-1} \\
\omega_{\text {vib }}=1600 \mathrm{~cm}^{-1} \\
S=1.5
\end{gathered}
$$

