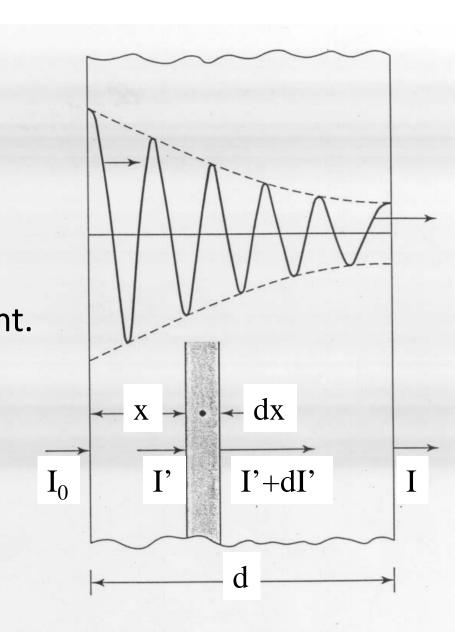
The absorption cross section, σ_A

The absorption cross section has units of area (cm²). It gives a probability for absorption. We have discussed the probability in terms of the transition dipole moment. M_{12} and shape in terms of the Franck-Condon factor, FC.

$$\sigma_A(\omega) \propto |M_{12}|^2 FC(\omega)$$

The absorption cross section is proportional to the well known extinction coefficient.

$$\epsilon(\omega) = \frac{\sigma_A(\omega)N_A}{1000}$$


The extinction coefficient has units of M⁻¹cm⁻¹.

Beer-Lambert Law

$$I = I_0 10^{-A}$$

$$A(\nu) = \epsilon(\nu)cd$$

A is the absorbance. $\epsilon(n)$ is the extinction coefficient. The unit of $\epsilon(n)$ is $M^{-1}cm^{-1}$. C is the concentration (M). d is the pathlength (cm). The exponential attenuation of the intensity is shown in the Figure.

