Bond length of HF and HCl

We would like to find the bond lengths of HF and HCl . To apply rotational or vibrational spectroscopy formulae to these diatomic molecules, you will need to use the reduced mass, given by:

$$
\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}
$$

A. Calculate the reduced mass for both HF and HCl in kilograms.
B. Given the rotational constant $\widetilde{B}=19.5 \mathrm{~cm}^{-1}$ for HF and $17.9 \mathrm{~cm}^{-1}$ for HCl determine the bond length of each molecule.

Bond length of HF and HCl

We would like to find the bond lengths of HF and HCl . To apply rotational or vibrational spectroscopy formulae to these diatomic molecules, you will need to use the reduced mass, given by:

$$
\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}
$$

A. Calculate the reduced mass for both HF and HCl in kilograms.

Solution: for HF.

$$
\mu=\frac{m_{H} m_{F}}{m_{H}+m_{F}}=0.95\left(1.660 \times 10^{-27} \mathrm{~kg}\right)=1.577 \times 10^{-27} \mathrm{~kg}
$$

and for HCl

$$
\mu=\frac{m_{H} m_{C l}}{m_{H}+m_{C l}}=0.972\left(1.660 \times 10^{-27} \mathrm{~kg}\right)=1.613 \times 10^{-27} \mathrm{~kg}
$$

Bond length of HF and HCl

B. Given the rotational constant $\widetilde{B}=19.5 \mathrm{~cm}^{-1}$ for HF and $17.9 \mathrm{~cm}^{-1}$ for HCl determine the bond length of each molecule.
The rotational constant \widetilde{B} is:

$$
\widetilde{\mathrm{B}}=\frac{h}{8 \pi^{2} c \mu R^{2}}
$$

If given \widetilde{B} you can solve for the internuclear distance of a diatomic as follows.

$$
\mathrm{R}=\sqrt{\frac{h}{8 \pi^{2} c \mu \widetilde{\mathrm{~B}}}}
$$

Bond length of HF and HCl

B. Given the rotational constant $\widetilde{B}=19.5 \mathrm{~cm}^{-1}$ for HF and $17.9 \mathrm{~cm}^{-1}$ for HCl determine the bond length of each molecule.

For HF

$$
\begin{aligned}
& \mathrm{R}=\sqrt{\frac{6.626 \times 10^{-34} \mathrm{Js}}{8(3.141)^{2}\left(2.99 \times 10^{10} \frac{\mathrm{Cm}}{\mathrm{~s}}\right)\left(1.577 \times 10^{-27} \mathrm{~kg}\right)\left(19.5 \mathrm{~cm}^{-1}\right)}} \\
&=0.955 \AA
\end{aligned}
$$

For HCl

$$
\begin{aligned}
& \mathrm{R}=\sqrt{\frac{6.626 \times 10^{-34} \mathrm{Js}}{8(3.141)^{2}\left(2.99 \times 10^{10} \frac{\mathrm{Cm}}{\mathrm{~s}}\right)\left(1.613 \times 10^{-26} \mathrm{~kg}\right)\left(17.9 \mathrm{~cm}^{-1}\right)}} \\
& =0.985 \AA
\end{aligned}
$$

