

Bond length of O₂ and N₂

The atmosphere is made up of 79% N_2 and 20% O_2 . To apply rotational or vibrational spectroscopy formulae to these diatomic molecules, you will need to use the reduced mass, given by:

$$\mu = \frac{m_1 m_2}{m_1 + m_2}$$

- A. Calculate the reduced mass for both N_2 and O_2 in kilograms.
- B. Given the rotational constant $\tilde{B} = 1.99 \text{ cm}^{-1}$ for N_2 and 1.45 cm⁻¹ for O_2 determine the bond length of each molecule.
- C. Calculate the intensity of the J=0 \rightarrow J=1 transition in the rotational spectra of N₂.