Center of mass and reduced mass problem

Given the drawing below determine the quantities in terms of M_{1}, M_{2} and R_{0}. Please assume that the origin is at mass 1 and the distance R_{0} is at mass 2.
(a) the center of mass along the x axis as a fraction of R_{0}.

(b) the definition of the reduced mass μ based on the moment of inertia

Center of mass and reduced mass problem

Given the drawing below determine the quantities in terms of M_{1}, M_{2} and R_{0}. Please assume that the origin is at mass 1 and the distance R_{0} is at mass 2.
(a) the center of mass along the x axis as a fraction of R_{0}.

The center of mass is given by:

$$
\begin{gathered}
\sum_{i=1}^{N} m_{i} r_{i}=0 \\
-M_{1} x_{c m}+M_{2}\left(R_{0}-x_{c m}\right)=0
\end{gathered}
$$

Center of mass and reduced mass problem

Given the drawing below determine the quantities in terms of M_{1}, M_{2} and R_{0}. Please assume that the origin is at mass 1 and the distance R_{0} is at mass 2.
(a) the center of mass along the x axis as a fraction of R_{0}.

Solving for x_{cm}

$$
-M_{1} x_{c m}+M_{2}\left(R_{0}-x_{c m}\right)=0
$$

The center of mass is given by:

$$
x_{c m}=\frac{M_{2}}{M_{1}+M_{2}} R_{0}
$$

Center of mass and reduced mass problem

Given the drawing below determine the quantities in terms of M_{1}, M_{2} and R_{0}. Please assume that the origin is at mass 1 and the distance R_{0} is at mass 2.
(a) the center of mass along the x axis as a fraction of R_{0}.

(b) the definition of the reduced mass μ based on the moment of inertia The moment of inertia for both masses is

$$
\begin{gathered}
I=\sum_{i=1}^{N} m_{i} r_{i}^{2} \\
I=M_{1} x_{c m}^{2}+M_{2}\left(R_{0}-x_{c m}\right)^{2}
\end{gathered}
$$

Center of mass and reduced mass problem

The center of mass is given by:

$$
x_{c m}=\frac{M_{2}}{M_{1}+M_{2}} R_{0}
$$

The moment of inertia for both masses is

$$
I=M_{1} x_{c m}^{2}+M_{2}\left(R_{0}-x_{c m}\right)^{2}
$$

Substituting in for the center of mass

$$
I=M_{1}\left(\frac{M_{2}}{M_{1}+M_{2}}\right)^{2} R_{0}^{2}+M_{2}\left(R_{0}-\frac{M_{2}}{M_{1}+M_{2}} R_{0}\right)^{2}
$$

Center of mass and reduced mass problem

And carrying out the algebra on the mass terms

$$
\begin{gathered}
I=M_{1}\left(\frac{M_{2}}{M_{1}+M_{2}}\right)^{2} R_{0}^{2}+M_{2}\left(1-\frac{M_{2}}{M_{1}+M_{2}}\right)^{2} R_{0}^{2} \\
I=M_{1}\left(\frac{M_{2}}{M_{1}+M_{2}}\right)^{2} R_{0}^{2}+M_{2}\left(\frac{M_{1}}{M_{1}+M_{2}}\right)^{2} R_{0}^{2} \\
I=\left(\frac{M_{1} M_{2}^{2}}{\left(M_{1}+M_{2}\right)^{2}}+\frac{M_{2} M_{1}^{2}}{\left(M_{1}+M_{2}\right)^{2}}\right) R_{0}^{2}
\end{gathered}
$$

Center of mass and reduced mass problem

Collecting terms we have

$$
I=\left(\frac{M_{1} M_{2}\left(M_{1}+M_{2}\right)}{\left(M_{1}+M_{2}\right)^{2}}\right) R_{0}^{2}
$$

And dividing we obtain

$$
I=\left(\frac{M_{1} M_{2}}{M_{1}+M_{2}}\right) R_{0}^{2}
$$

which can be compared to the required definition

$$
I=\mu R_{0}^{2}
$$

Center of mass and reduced mass problem

Comparing

$$
I=\left(\frac{M_{1} M_{2}}{M_{1}+M_{2}}\right) R_{0}^{2}
$$

to

$$
I=\mu R_{0}^{2}
$$

We see that

$$
\mu=\frac{M_{1} M_{2}}{M_{1}+M_{2}}
$$

