Normalization of a harmonic oscillator

wave function

We have discussed the normalization of the $v=0$ harmonic oscillator wave function in class. In this problem you are asked to determine the normalization constant for the $\mathrm{v}=1$ harmonic oscillator wave function. Given that the wave function is:

$$
\chi_{1}=N_{1} 2 \sqrt{\alpha} Q e^{-\frac{\alpha Q^{2}}{2}}
$$

Normalization of a harmonic oscillator wave function

Given that the wave function is:

$$
\chi_{1}=N_{1} 2 \sqrt{\alpha} Q e^{-\frac{\alpha Q^{2}}{2}}
$$

Set up the normalization problem by squaring the wave function

$$
1=\int_{-\infty}^{\infty} \chi_{1} \chi_{1} d Q=N_{1}^{2} \int_{-\infty}^{\infty} 2 \sqrt{\alpha} Q e^{-\alpha Q^{2} / 2} 2 \sqrt{\alpha} Q e^{-\frac{\alpha Q^{2}}{2}} d Q
$$

Note that the Hermite functions are real so we do not need to worry about the complex conjugate of the wave function.

$$
1=N_{1}^{2} 4 \alpha \int_{-\infty}^{\infty} 4 \alpha Q^{2} e^{-\alpha Q^{2}} d Q
$$

Normalization of a harmonic oscillator wave function

Given that the wave function is:

$$
\chi_{1}=N_{1} 2 \sqrt{\alpha} Q e^{-\frac{\alpha Q^{2}}{2}}
$$

We use the Gaussian polynomial formula:

$$
1=N_{1}^{2} 4 \alpha(-1)^{1} \frac{\partial}{\partial \alpha}\left(\frac{\pi}{\alpha}\right)^{1 / 2}=N_{1}^{2} 4 \alpha \frac{1}{2 \alpha}\left(\frac{\pi}{\alpha}\right)^{1 / 2}
$$

To obtain the square of the normalization constant.

$$
N_{1}^{2}=\frac{1}{2}\left(\frac{\alpha}{\pi}\right)^{1 / 2}
$$

Finally, we take the square root to find the normalization constant:

$$
N_{1}=\frac{1}{\sqrt{2}}\left(\frac{\alpha}{\pi}\right)^{1 / 4}
$$

