Transition dipole moment

In order for infrared light to be absorbed the polarization must be aligned with the direction of the transition moment. For a vibrational mode this is determined by the directional change in the dipole moment. This is shown below for the bending mode of $\mathrm{H}_{2} \mathrm{O}$.

The change in ground state dipole moment during vibration interacts with light.

$$
\mu(Q)=\mu_{0}+\left(\frac{\partial \mu}{\partial Q}\right) Q+\cdots
$$

$$
\begin{equation*}
\mu<\mu_{0} \tag{0}
\end{equation*}
$$

The first term is static and does not contribute to the transition. Calling the vibrational wave functions χ_{i} the transition moment is:

$$
\left(\frac{\partial \mu_{0}}{\partial Q}\right)\left\langle\chi_{0}\right| Q\left|\chi_{1}\right\rangle
$$

Infrared transitions occur because of changes in the dipole moment during oscillatory motion. This change can be described using a power series expansion of the dipole moment as a function of nuclear coordinate. The first term from the expansion can permit the product of χ_{0} and χ_{1} to have a non-zero value. This is transition dipole moment for the $0 \rightarrow 1$ transition
$\left(\frac{\partial \mu_{0}}{\partial Q}\right) \int_{-\infty}^{\infty} \chi_{0} Q \chi_{1} d Q=\left(\frac{\alpha}{\pi}\right)^{1 / 2}\left(\frac{\partial \mu_{0}}{\partial Q}\right) \int_{-\infty}^{\infty} e^{-\alpha Q^{2} / 2} Q \sqrt{2 \alpha} Q e^{-\frac{\alpha Q^{2}}{2}} d Q$

Infrared transitions occur because of changes in the dipole moment during oscillatory motion. This change can be described using a power series expansion of the dipole moment as a function of nuclear coordinate. The first term from the expansion can permit the product of χ_{0} and χ_{1} to have a non-zero value. This is transition dipole moment for the $0 \rightarrow 1$ transition

$$
\begin{aligned}
& \left(\frac{\partial \mu_{0}}{\partial Q}\right) \int_{-\infty}^{\infty} \chi_{0} Q \chi_{1} d Q=\left(\frac{\alpha}{\pi}\right)^{1 / 2}\left(\frac{\partial \mu_{0}}{\partial Q}\right) \int_{-\infty}^{\infty} e^{-\alpha Q^{2} / 2} Q \sqrt{2 \alpha} Q e^{-\frac{\alpha Q^{2}}{2}} d Q \\
& =\left(\frac{2}{\pi}\right)^{1 / 2} \alpha\left(\frac{\partial \mu_{0}}{\partial Q}\right) \int_{-\infty}^{\infty} e^{-\alpha Q^{2}} Q^{2} d Q=\left(\frac{\partial \mu_{0}}{\partial Q}\right)\left(\frac{1}{2 \alpha}\right)^{1 / 2}
\end{aligned}
$$

Mathematical note

Gaussian integrals have the solutions:

$$
\int_{-\infty}^{\infty} e^{-\alpha x^{2}} d x=\sqrt{\frac{\pi}{\alpha}}
$$

A Gaussian times an odd polynomial has a value of zero over the even limits of -infinity to infinity.

$$
\int_{-\infty}^{\infty} e^{-\alpha x^{2}} x d x=0
$$

The even polynomials time Gaussians are not zero.

Mathematical note

If multiply any two vibrational functions that differ by
1 quantum then we will necessarily have one even and one odd function. The integral over even limits will be zero.

$$
\int_{-\infty}^{\infty} \chi_{0} \chi_{1} d Q=0
$$

We can see this by plugging in the wave functions.

$$
\left(\frac{\alpha}{\pi}\right)^{1 / 2} \sqrt{2 \alpha} \int_{-\infty}^{\infty} Q \exp \left\{-\alpha Q^{2}\right\} d Q=0
$$

However, radiation can couple the vibrations by the term

$$
\left(\frac{\partial \mu}{\partial Q}\right) Q
$$

Mathematical note

We have instead that

$$
\left(\frac{\partial \mu}{\partial Q}\right) \int_{-\infty}^{\infty} \chi_{0} Q \chi_{1} d Q=0 ?
$$

We can see this by plugging in the wave functions that the result is an even function times a Gaussian, which is not zero.

$$
\left(\frac{\partial \mu}{\partial Q}\right)\left(\frac{\alpha}{\pi}\right)^{1 / 2} \sqrt{2 \alpha} \int_{-\infty}^{\infty} Q^{2} \exp \left\{-\alpha Q^{2}\right\} d Q \neq 0
$$

We note the general property of Gaussians, which permits us To calculate any even polynomial times a Gaussian:

$$
(-1)^{n} \frac{\partial^{n} I_{0}(\alpha)}{\partial \alpha^{n}}=\int_{-\infty}^{\infty} x^{2 n} x^{-\alpha x^{2}} d x=(-1)^{n} \frac{\partial^{n}}{\partial \alpha^{n}}\left(\frac{\pi}{\alpha}\right)^{1 / 2}
$$

Selection rule

Within the harmonic approximation transitions can only occur between states separated by one quantum number ($\Delta \mathrm{v}=1$ or $\Delta \mathrm{v}=-1$).

The change of $\Delta v=+1$ corresponds to absorption and $\Delta v=-1$ to emission.

This is known as a selection rule. We have Illustrated this rule on the following slides.

Vibrational Transition

Vibrational Transition

Vibrational Selection Rule

