Classical harmonic oscillator

Mass on a spring

B Diatomic

Force constant k

$$
\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}
$$

D

$$
\frac{\mu}{2}\left(\frac{\partial Q}{\partial t}\right)^{2}+\frac{k}{2} Q^{2}=0
$$

The classical harmonic oscillator obeys a Hooke's law equation:

$$
F=-k Q
$$

where k is a restoring force. A trial solution is:

$$
Q(t)=Q_{0} \cos (\omega t)
$$

When substituted into the Hooke's law equation:

$$
-\mu \omega^{2} Q_{0} \cos (\omega t)=-k Q_{0} \cos (\omega t)
$$

We can solve for the natural frequency of the spring And we can also express that in cm^{-1}.

$$
\omega=\sqrt{\frac{k}{\mu}} \quad \tilde{v}\left(c m^{-1}\right)=\frac{1}{2 \pi c} \sqrt{\frac{k}{\mu}}
$$

Harmonic approximation

$V(Q)=V\left(Q_{0}\right)+\left(\frac{\partial V}{\partial Q}\right)\left(Q-Q_{0}\right)+\frac{1}{2}\left(\frac{\partial^{2} V}{\partial Q^{2}}\right)\left(Q-Q_{0}\right)^{2}+\cdots$

At equilibrium $\quad\left(\frac{\partial V}{\partial Q}\right)=0$

Assume terms higher than quadratic are zero. By definition

$$
k=\left(\frac{\partial^{2} V}{\partial Q^{2}}\right)
$$

Quantum approach to the

 vibrational harmonic oscillatorSolution is Gaussian
Energy is quantized
$-\frac{\hbar^{2}}{2 \mu} \frac{\partial^{2}}{\partial Q^{2}} \chi+\frac{k}{2} Q^{2} \chi=E \chi$

Internuclear Distance (\AA) Allowed transitions
Q
$v^{\prime} \rightarrow v+1, v^{\prime} \rightarrow v-1$

We can use a harmonic potential in the Schrödinger equation to calculate the wave functions and energies of the vibrations of molecules.

$$
-\frac{\hbar^{2}}{2 \mu} \frac{\partial^{2}}{\partial Q^{2}} \chi+\frac{k}{2} Q^{2} \chi=E \chi
$$

We can use a harmonic potential in the Schrödinger equation to calculate the wave functions and energies of the vibrations of molecules.

$$
-\frac{\hbar^{2}}{2 \mu} \frac{\partial^{2}}{\partial Q^{2}} \chi+\frac{k}{2} Q^{2} \chi=E \chi
$$

Making the definitions,

$$
\mathrm{y}=\sqrt{\alpha} \mathrm{Q} \text { where } \alpha=\frac{\mu \omega}{\hbar} \text { and } \epsilon=\frac{2 \mathrm{E}}{\hbar \omega}
$$

We can use a harmonic potential in the Schrödinger equation to calculate the wave functions and energies of the vibrations of molecules.

$$
-\frac{\hbar^{2}}{2 \mu} \frac{\partial^{2}}{\partial Q^{2}} \chi+\frac{k}{2} Q^{2} \chi=E \chi
$$

Making the definitions,

$$
\mathrm{y}=\sqrt{\alpha} \mathrm{Q} \text { where } \alpha=\frac{\mu \omega}{\hbar} \text { and } \epsilon=\frac{2 \mathrm{E}}{\hbar \omega}
$$

Noting that

$$
\frac{\partial^{2}}{\partial Q^{2}}=\frac{\mu \omega}{\hbar} \frac{\partial^{2}}{\partial y^{2}}
$$

we can write the equation as

$$
-\frac{\partial^{2}}{\partial y^{2}} \chi+y^{2} \chi=\epsilon \chi
$$

One approach to solving such an equation is to find an asymptotic solution $\mathrm{g}(\mathrm{y})$ assuming that $\varepsilon \sim 0$. Then, we can assume that the true solution is the product of $g(y)$ and a function $\mathrm{f}(\mathrm{y})$. The asymptotic solution is:

$$
\frac{\partial^{2}}{\partial y^{2}} \chi \approx y^{2} \chi
$$

$f(y)$ can be a series expansion that will give different solutions for various values of ε.

One approach to solving such an equation is to find an asymptotic solution $\mathrm{g}(\mathrm{y})$ assuming that $\varepsilon \sim 0$. Then, we can assume that the true solution is the product of $g(y)$ and a function $f(y)$. The asymptotic solution is:

$$
\frac{\partial^{2}}{\partial y^{2}} \chi \approx y^{2} \chi
$$

$\mathrm{f}(\mathrm{y})$ can be a series expansion that will give different solutions for various values of ε. A Gaussian function is an appropriate trial solution for the this equation,

$$
\chi_{\text {trial }}=e^{-y^{2} / 2} \quad \frac{\partial^{2}}{\partial y^{2}} \chi_{\text {trial }}=\left(y^{2}-1\right) e^{-y^{2} / 2}
$$

For large values of y we have

$$
\frac{\partial^{2}}{\partial y^{2}} \chi_{\text {trial }} \approx y^{2} e^{-y^{2} / 2}
$$

Thus, our trial solution for the general equation is

$$
\chi_{\text {trial }}=f(y) e^{-y^{2} / 2}
$$

Substitution of the trial solution

In order to substitute this equation we need the derivatives. We have

$$
\frac{\partial \chi_{\text {trial }}}{\partial y}=\left(\frac{\partial f}{\partial y}-f y\right) e^{-y^{2} / 2}
$$

Substitution of the trial solution

In order to substitute this equation we need the derivatives. We have

$$
\frac{\partial \chi_{\text {trial }}}{\partial y}=\left(\frac{\partial f}{\partial y}-f y\right) e^{-y^{2} / 2}
$$

and

$$
\frac{\partial^{2} \chi_{\text {trial }}}{\partial y^{2}}=\left(\frac{\partial^{2} f}{\partial y^{2}}-2 y \frac{\partial f}{\partial y}+\left(y^{2}-1\right) f\right) e^{-y^{2} / 2}
$$

Substitution of the trial solution

In order to substitute this equation we need the derivatives. We have

$$
\frac{\partial \chi_{\text {trial }}}{\partial y}=\left(\frac{\partial f}{\partial y}-f y\right) e^{-y^{2} / 2}
$$

and

$$
\frac{\partial^{2} \chi_{\text {trial }}}{\partial y^{2}}=\left(\frac{\partial^{2} f}{\partial y^{2}}-2 y \frac{\partial f}{\partial y}+\left(y^{2}-1\right) f\right) e^{-y^{2} / 2}
$$

Substituting this into the above equation gives us

$$
\frac{\partial^{2} f}{\partial y^{2}}-2 y \frac{\partial f}{\partial y}+(\epsilon-1) f=0
$$

Frobenius series

If we assume that $f(y)$ has the form of a series

$$
f(y)=\sum_{n=0}^{\infty} a_{n} y^{n}
$$

Frobenius series

If we assume that $f(y)$ has the form of a series

$$
f(y)=\sum_{n=0}^{\infty} a_{n} y^{n}
$$

Then the derivatives are

$$
\frac{\partial f}{\partial y}=\sum_{n=0}^{\infty} n a_{n} y^{n-1}
$$

Frobenius series

If we assume that $f(y)$ has the form of a series

$$
f(y)=\sum_{n=0}^{\infty} a_{n} y^{n}
$$

Then the derivatives are

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\sum_{n=0}^{\infty} n a_{n} y^{n-1} \\
\frac{\partial^{2} f}{\partial y^{2}} & =\sum_{n=0}^{\infty} n(n-1) a_{n} y^{n-2}=\sum_{n=0}^{\infty}(n+1)(n+2) a_{n+2} y^{n}
\end{aligned}
$$

Series solution of the equation

$$
\begin{gathered}
\sum_{n=0}^{\infty}(n+1)(n+2) a_{n+2} y^{n}-2 y \sum_{n=0}^{\infty} n a_{n} y^{n-1}+(\epsilon-1) \sum_{n=0}^{\infty} a_{n} y^{n}=0 \\
\sum_{n=0}^{\infty}\left((n+1)(n+2) a_{n+2}+(\epsilon-1-2 n) a_{n}\right) y^{n}=0
\end{gathered}
$$

Series solution of the equation

$$
\sum_{n=0}^{\infty}(n+1)(n+2) a_{n+2} y^{n}-2 y \sum_{n=0}^{\infty} n a_{n} y^{n-1}+(\epsilon-1) \sum_{n=0}^{\infty} a_{n} y^{n}=0
$$

$$
\sum_{n=0}^{\infty}\left((n+1)(n+2) a_{n+2}+(\epsilon-1-2 n) a_{n}\right) y^{n}=0
$$

Once we choose a value for ε there is one and only one sequence of coefficients, a_{n} that defines the function $f(y)$. Therefore, the sum can be zero for all values of y if and only if the coefficient of each power of

$$
(n+1)(n+2) a_{n+2}+(\epsilon-1-2 n) a_{n}=0
$$

Series solution of the equation

$$
\sum_{n=0}^{\infty}(n+1)(n+2) a_{n+2} y^{n}-2 y \sum_{n=0}^{\infty} n a_{n} y^{n-1}+(\epsilon-1) \sum_{n=0}^{\infty} a_{n} y^{n}=0
$$

$$
\sum_{n=0}^{\infty}\left((n+1)(n+2) a_{n+2}+(\epsilon-1-2 n) a_{n}\right) y^{n}=0
$$

Once we choose a value for ε there is one and only one sequence of coefficients, a_{n} that defines the function $f(y)$. Therefore, the sum can be zero for all values of y if and only if the coefficient of each power of

$$
(n+1)(n+2) a_{n+2}+(\epsilon-1-2 n) a_{n}=0
$$

And y vanishes separately. Thus,

$$
a_{n+2}=\frac{1+2 n-\epsilon}{(n+1)(n+2)} a_{n}
$$

Energies of the quantum oscillator

Rather than finding an infinite series (which would actually be divergent in this case!) we will assume that the solution is a polynomial that terminates after a finite number of terms, n . The condition for the series to terminate is

$$
a_{n+2}=0
$$

or

$$
1+2 n-\epsilon=0
$$

which implies

$$
\epsilon=2 n+1
$$

Therefore, from the above we have

$$
E=\frac{1}{2}(2 n+1) \hbar \omega=\left(n+\frac{1}{2}\right) \hbar \omega
$$

Wave functions of the quantum harmonic oscillator

Using the definition of α, the solutions have the form:

$$
\begin{aligned}
& \chi_{0}=\left(\frac{\alpha}{\pi}\right)^{1 / 4} e^{-\alpha Q^{2} / 2} \\
& \chi_{1}=\left(\frac{\alpha}{\pi}\right)^{\frac{1}{4}} \sqrt{2 \alpha} Q e^{-\frac{\alpha Q^{2}}{2}} \\
& \chi_{2}=\left(\frac{\alpha}{\pi}\right)^{1 / 4} \frac{\left(4 \alpha Q^{2}-2\right)}{2 \sqrt{2}} e^{-\alpha Q^{2} / 2}
\end{aligned}
$$

Vibrational wavefunctions and energies

- Energy levels are given by

$$
E_{v}=(v+1 / 2) \hbar \omega
$$

- Typical energies are of the order of 0-3200 cm^{-1}
- Wavefunctions are

$$
\Psi_{v}=N_{v} H_{v} e^{-y^{2} / 2}
$$

where H_{v} is the Hermite polynomial

Solutions to harmonic oscillator

The Hermite polynomials are derivatives of a Gaussian

$$
y=\sqrt{\alpha} Q \quad \text { where } \alpha=\frac{\mu \omega}{\hbar}
$$

The Hermite generating function is

$$
H_{v}(y)=(-1)^{\mathrm{v}} \mathrm{e}^{\mathrm{y}^{2} / 2} \frac{\mathrm{~d}^{\mathrm{v}}}{\mathrm{dy}^{\mathrm{v}}} \mathrm{e}^{-\mathrm{y}^{2} / 2}
$$

The normalization constant is

$$
\mathrm{N}_{\mathrm{v}}=\frac{1}{\sqrt{\alpha \pi^{1 / 2} 2^{v} v!}}
$$

Hermite polynomials

$$
\begin{array}{ll}
v & H_{v}(y) \\
0 & 1
\end{array}
$$

$$
12 y
$$

$$
2 \quad 4 y^{2}-2
$$

$$
38 y^{3}-12 y
$$

The square of the wave function gives rise to the probability distribution

Nuclear Displacement

There is a potential energy

surface that corresponds to each electronic state of the molecule

The shift in the nuclear displacement arises from the fact that the bond length increases in the σ^{*} state compared to the σ state. We will show that the overlap of the vibra--tional wave functions is key to understanding the shape of absorption bands.
Nuclear Displacement

