
Classical harmonic oscillator

As was the case for rotation, we can consider a simple
model of a mass on a spring attached to a wall of infinite
mass and a diatomic molecule as two simple examples.
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The classical harmonic oscillator obeys a Hooke’s
law equation:

where k is a restoring force. A trial solution is:

When substituted into the Hooke’s law equation:

We can solve for the natural frequency of the spring
And we can also express that in cm-1.
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Harmonic approximation

At equilibrium

Assume terms higher than quadratic are zero.
By definition
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Quantum approach to the 
vibrational harmonic oscillator

Solution is Gaussian
Energy is quantized

v is the quantum number
Allowed transitions
v’ → v + 1, v’ → v - 1
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We can use a harmonic potential in the Schrödinger equation to 
calculate the wave functions and energies of the vibrations of 
molecules.
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Noting that 

we can write the equation as



One approach to solving such an equation is to find an 
asymptotic solution g(y) assuming that ε ~ 0. Then, we can 
assume that the true solution is the product of g(y) and a function 
f(y). The asymptotic solution is:

f(y) can be a series expansion that will give different solutions 
for various values of ε. 



One approach to solving such an equation is to find an 
asymptotic solution g(y) assuming that ε ~ 0. Then, we can 
assume that the true solution is the product of g(y) and a function 
f(y). The asymptotic solution is:

f(y) can be a series expansion that will give different solutions 
for various values of ε. A Gaussian function is an appropriate 
trial solution for the this equation,

For large values of y we have

Thus, our trial solution for the general equation is



In order to substitute this equation we need the derivatives. 
We have
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and

Substituting this into the above equation gives us 

Substitution of the trial solution



If we assume that f(y) has the form of a series

Frobenius series
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Series solution of the equation



Once we choose a value for ε there is one and only one 
sequence of coefficients, an that defines the function f(y). 
Therefore, the sum can be zero for all values of y if and only if 
the coefficient of each power of 
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Once we choose a value for ε there is one and only one 
sequence of coefficients, an that defines the function f(y). 
Therefore, the sum can be zero for all values of y if and only if 
the coefficient of each power of 

And y vanishes separately. Thus,

Series solution of the equation



Rather than finding an infinite series (which would actually be 
divergent in this case!) we will assume that the solution is a 
polynomial that terminates after a finite number of terms, n.  
The condition for the series to terminate is 

which implies

or

Therefore, from the above we have

Energies of the quantum oscillator



Using the definition of α, the solutions have the form:

Wave functions of the 
quantum harmonic oscillator



Vibrational wavefunctions
and energies

• Energy levels are given by 
Ev = (v +1/2)hω

• Typical energies are of the 
order of 0 - 3200 cm-1

• Wavefunctions are             
Ψv = NvHve-y2/2

where Hv is the Hermite
polynomial 



Solutions to harmonic oscillator
The Hermite polynomials are derivatives of a Gaussian

v Hv(y)
0 1
1 2y
2 4y 2 – 2
3 8y 3 – 12y

The normalization constant is

Hv y = −1 ve ⁄y2 2 dv

dyv
e− ⁄y2 2

Nv =
1

απ ⁄1 22𝑣𝑣𝑣𝑣!

The Hermite generating function is Hermite polynomials



The square of the wave function gives 
rise to the probability distribution

The probability is 
shown in the figure.

Solutions are
Gaussians multiplied
by polynomial functions.

χ2



There is a potential energy 
surface that corresponds to each 
electronic state of the molecule

The shift in the nuclear
displacement arises from
the fact that the bond
length increases in the
σ* state compared to the
σ state.  We will show that
the overlap of the vibra-
-tional wave functions is
key to understanding the
shape of absorption bands.
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