Spherical Polar Coordinates

The wavefunctions of a rigid rotor are called spherical harmonics

The solutions to the θ and ϕ equation (angular part) are the spherical harmonics $\mathrm{Y}(\theta, \phi)=\Theta(\theta) \Phi(\phi)$ Separation of variables using the functions $\Theta(\theta)$ and $\Phi(\phi)$ allows solution of the rotational wave equation.

$$
-\frac{\dot{n}^{2}}{2 l}\left(\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} Y}{\partial \varphi^{2}}+\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial Y}{\partial \theta}\right)\right)=E Y
$$

We can obtain a θ and ϕ equation from the above equation.

Rotational Wavefunctions

$\mathrm{J}=0$

$\mathrm{J}=1$

$$
\mathrm{J}=2
$$

These are the spherical harmonics $\mathrm{Y}_{\text {JМ }}$, which are solutions of the angular Schrodinger equation.

The form of the spherical harmonics

Including normalization the spherical harmonics are

$$
\begin{array}{ll}
Y_{0}^{0}=\frac{1}{\sqrt{4 \pi}} & Y_{2}^{0}=\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2} \theta-\right. \\
Y_{1}^{0}=\sqrt{\frac{3}{4 \pi}} \cos \theta & Y_{2}^{ \pm 1}=\sqrt{\frac{15}{8 \pi}} \sin \theta \cos \theta \epsilon \\
Y_{1}^{ \pm 1}=\sqrt{\frac{3}{8 \pi}} \sin \theta e^{ \pm i \phi} Y_{2}^{2}=\sqrt{\frac{15}{32 \pi}} \sin ^{2} \theta e^{ \pm 2 i \phi}
\end{array}
$$

The form commonly used to represent p and d orbitals are linear combinations of these functions

Solutions to the 3-D rotational hamiltonian

- There are two quantum numbers
J is the total angular momentum quantum number M is the z -component of the angular momentum
- The spherical harmonics called $Y_{J M}$ are functions whose probability $\left|\mathrm{Y}_{\mathrm{JM}}\right|^{2}$ has the well known shape of the s, p and d orbitals etc.
$\mathrm{J}=0$ is $\mathrm{s}, \mathrm{M}=0$
$J=1$ is $p, M=-1,0,1$
$\mathrm{J}=2$ is $\mathrm{d}, \mathrm{M}=-2,-1,0,1,2$
$J=3$ is $f, M=-3,-2,-1,0,1,2,3$
etc.

The degeneracy of the solutions

- The solutions form a set of $2 \mathrm{~J}+1$ functions at each energy (the energies are

$$
E=\frac{\hbar^{2}}{2 I} J(J+1)
$$

- A set of levels that are equal in energy is called a degenerate set.

Orthogonality of wavefunctions

- The rotational wavefunctions can be represented as the product of sines and cosines.
- Ignoring normalization we have:
- s 1
- p $\cos \theta, \sin \theta \cos \phi, \sin \theta \sin \phi$
- d $1 / 2\left(3 \cos ^{2} \theta-1\right), \cos ^{2} \theta \cos 2 \phi, \cos ^{2} \theta \sin 2 \phi$, $\cos \theta \sin \theta \cos \phi, \cos \theta \sin \theta \sin \phi$
- The differential angular element is $\sin \theta \mathrm{d} \theta \mathrm{d} \phi / 4 \pi$ over
- the limits $\theta=0$ to π and $\phi=0$ to 2π.
- The angular wavefunctions are orthogonal.

The moment of inertia

The kinetic energy of a rotating body is $1 / 21 \omega^{2}$. The moment of inertia is given by:

$$
I=\sum_{i=1}^{\infty} m_{i} r_{i}^{2}
$$

The rigid rotor approximation assumes that molecules do not distort under rotation. The types or rotor are (with moments I_{a}, I_{b}, I_{c})

- Spherical: Three equal moments $\left(\mathrm{CH}_{4}, \mathrm{SF}_{6}\right)$
(Note: No dipole moment)
- Symmetric: Two equal moments $\left(\mathrm{NH}_{3}, \mathrm{CH}_{3} \mathrm{CN}\right)$
- Linear: One moment $\left(\mathrm{CO}_{2}, \mathrm{HCl}, \mathrm{HCN}\right)$
(Note: Dipole moment depends on asymmetry)
- Asymmetric: Three unequal moments $\left(\mathrm{H}_{2} \mathrm{O}\right)$

