Spherical Polar Coordinates

The wavefunctions of a rigid rotor are called spherical harmonics

The solutions to the θ and ϕ equation (angular part) are the spherical harmonics $Y(\theta, \phi) = \Theta(\theta) \Phi(\phi)$ Separation of variables using the functions $\Theta(\theta)$ and $\Phi(\phi)$ allows solution of the rotational wave equation.

$$-\frac{\dot{n}^2}{2I}\left(\frac{1}{\sin^2\theta}\frac{\partial^2 Y}{\partial \varphi^2} + \frac{1}{\sin\theta}\frac{\partial}{\partial \theta}\left(\sin\theta\frac{\partial Y}{\partial \theta}\right)\right) = EY$$

We can obtain a θ and ϕ equation from the above equation.

Rotational Wavefunctions

These are the spherical harmonics Y_{JM} , which are solutions of the angular Schrodinger equation.

The form of the spherical harmonics

Including normalization the spherical harmonics are

$$Y_0^0 = \frac{1}{\sqrt{4\pi}} \qquad Y_2^0 = \sqrt{\frac{5}{16\pi}} \left(3\cos^2\theta - 1 \right)$$

$$Y_1^0 = \sqrt{\frac{3}{4\pi}} \cos\theta \qquad Y_2^{\pm 1} = \sqrt{\frac{15}{8\pi}} \sin\theta \cos\theta e^{\pm i\phi}$$

$$Y_1^{\pm 1} = \sqrt{\frac{3}{8\pi}} \sin\theta e^{\pm i\phi} \qquad Y_2^2 = \sqrt{\frac{15}{32\pi}} \sin^2\theta e^{\pm 2i\phi}$$

The form commonly used to represent p and d orbitals are linear combinations of these functions

Solutions to the 3-D rotational hamiltonian

- There are two quantum numbers
 - J is the total angular momentum quantum number M is the z-component of the angular momentum
- The spherical harmonics called $Y_{\rm JM}$ are functions whose probability $|Y_{\rm JM}|^2$ has the well known shape of the s, p and d orbitals etc.

$$J = 0 \text{ is s } M = 0$$

$$J = 1 \text{ is p } M = -1, 0, 1$$

$$J = 2 \text{ is d } M = -2, -1, 0, 1, 2$$

$$J = 3 \text{ is f } M = -3, -2, -1, 0, 1, 2, 3$$

etc.

The degeneracy of the solutions

• The solutions form a set of 2J + 1 functions at each energy (the energies are

$$E = \frac{\hbar^2}{2I}J(J+1)$$

• A set of levels that are equal in energy is called a degenerate set.

Orthogonality of wavefunctions

- The rotational wavefunctions can be represented as the product of sines and cosines.
- Ignoring normalization we have:
- s 1
- p $\cos\theta$, $\sin\theta\cos\phi$, $\sin\theta\sin\phi$
- d 1/2(3cos²θ 1), cos²θcos2φ , cos²θsin2φ , cosθsinθcosφ , cosθsinθsinφ
- The differential angular element is $\sin\theta d\theta d\phi/4\pi$ over
- the limits $\theta = 0$ to π and $\phi = 0$ to 2π .
- The angular wavefunctions are orthogonal.

The moment of inertia

The kinetic energy of a rotating body is $1/2I\omega^2$. The moment of inertia is given by:

$$I = \sum_{i=1}^{\infty} m_i r_i^2$$

The rigid rotor approximation assumes that molecules do not distort under rotation. The types or rotor are (with moments I_a , I_b , I_c)

- Spherical: Three equal moments (CH₄, SF₆) (Note: No dipole moment)
- Symmetric: Two equal moments (NH₃, CH₃CN)
- Linear: One moment (CO₂, HCI, HCN)
 (Note: Dipole moment depends on asymmetry)
- Asymmetric: Three unequal moments (H₂O)