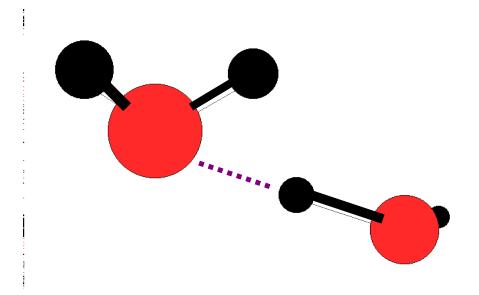

## Comparison of harmonic and anharmonic potentials



### **Overtones of water**

Even in water vapor  $v_1 \approx v_3$ , but symmetries are different,  $\Gamma_1 \neq \Gamma_3$ . However, the third overtone of mode 1 has the same symmetry as the combination band

 $\Gamma_1 \Gamma_1 \Gamma_1 = \Gamma_1 \Gamma_3 \Gamma_3$ . Strong anharmonic coupling leads to strong overtones at 11,032 and 10,613 cm<sup>-1</sup>. These intense bands give water and ice their blue color.




 $v_1$  symmetric stretch 3825 cm<sup>-1</sup>  $v_2$  bend 1654 cm<sup>-1</sup>

 $v_3$  asymmetric stretch 3935 cm<sup>-1</sup>

# Frequency shift due to molecular interactions

Hydrogen bonding lowers O-H force constant and H-O-H bending force constant.



vapor  $\rightarrow$  liquid  $v_1 3825 \rightarrow 3657$   $v_2 1654 \rightarrow 1595$  $v_3 3935 \rightarrow 3756$ 

### Morse potential

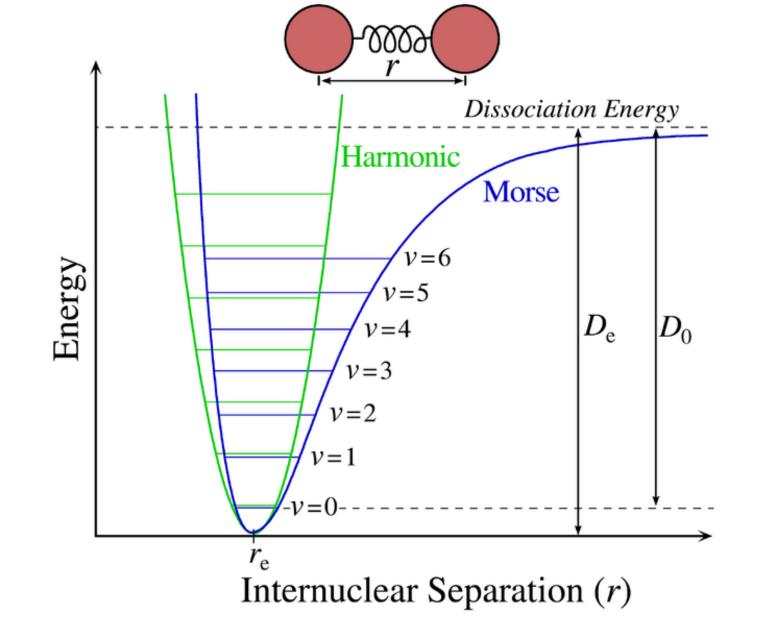
The Morse potential function can be used to represent anharmonic surfaces:

$$V(Q) = hc\widetilde{D}_e(1 - e^{-aQ})^2$$

The anharmonic oscillator Schrodinger equation can be solved for the energy, which gives the following transitions:

$$\tilde{E}_{v} = \left(v + \frac{1}{2}\right)\tilde{v}_{e} + \left(v + \frac{1}{2}\right)^{2}x_{e}\tilde{v}_{e}$$

The value for  $\tilde{D}_e$  is the well depth and  $x_e$  is the anharmonicity constant.


#### Morse potential

The parameter a in the Morse potential depends on both the vibrational wave number and the well depth.

$$a = 2\pi c \tilde{\nu}_e \sqrt{\frac{\mu}{2\tilde{D}_e}}$$

From this relationship one can derive the value of the anharmonicity constant in terms of the wave number and the well depth.

$$x_e = \frac{\tilde{\nu}_e}{4\tilde{D}_e}$$



"Morse-potential". Licensed under CC BY-SA 3.0 via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Morse-potential.png#/media/File:Morse-potential.png