Understanding the planetary model

What the value of ω that satisfies the Bohr model given the following data.

$$
\begin{gathered}
\varepsilon_{0}=8.85 \times 10^{-12} N^{-1} C^{2} / \mathrm{m}^{2} \\
\mathrm{~m}_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \\
\mathrm{q}_{\mathrm{e}}=-\mathrm{q}_{\mathrm{p}}=1.602 \times 10^{-19} \mathrm{C} \\
\mathrm{R}=5.29 \times 10^{-10} \mathrm{~m}
\end{gathered}
$$

Given the balance of forces that must exist according to the Bohr model.

$$
\mathrm{F}_{\text {attract }}=\mathrm{F}_{\text {centripedal }}
$$

Understanding the planetary model

In this case the balance of forces gives us:

$$
\frac{\mathrm{q}_{\mathrm{e}} \mathrm{q}_{\mathrm{p}}}{4 \pi \varepsilon_{0} \mathrm{R}^{2}}=\mathrm{m}_{\mathrm{e}} \omega^{2} \mathrm{R}
$$

Solve for the angular frequency:

$$
\omega=\sqrt{\frac{\mathrm{q}_{\mathrm{e}} \mathrm{q}_{\mathrm{p}}}{4 \pi \varepsilon_{0} \mathrm{~m}_{\mathrm{e}} \mathrm{R}^{3}}}
$$

And rewrite it in units of frequency in s.

$$
v=\sqrt{\frac{\mathrm{q}_{\mathrm{e}} \mathrm{q}_{\mathrm{p}}}{16 \pi^{3} \varepsilon_{0} \mathrm{~m}_{\mathrm{e}} \mathrm{R}^{3}}}
$$

Understanding the planetary model

Plugging in the numbers we find:

$$
v=\sqrt{\frac{\left(1.60 \times 10^{-19} \mathrm{C}\right)^{2}}{16 \pi^{3}\left(8.85 \times 10^{-12} N^{-1} C^{2} / \mathrm{m}^{2}\right)\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(5.29 \times 10^{-11} \mathrm{~m}\right)^{3}}}
$$

and the frequency is:

$$
v=6.56 \times 10^{15} \mathrm{~s}^{-1}
$$

