Schrödinger equation for hydrogen: The form of the potential

- The Coulomb potential between the electron and the proton is

$$
\mathrm{V}=-\mathrm{Ze}^{2} / 4 \pi \varepsilon_{0} \mathrm{r}
$$

- The hamiltonian for both the proton and electron is:

$$
-\frac{\hbar^{2}}{2 m_{e}} \nabla^{2}{ }_{\text {elec }} \Psi-\frac{\hbar^{2}}{2 m_{N}} \nabla^{2}{ }_{\text {nuc }} \Psi-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r} \Psi=\mathbf{E} \Psi
$$

- Separation of nuclear and electronic variables results in an electronic equation in the center-of-mass coordinates:

$$
\begin{aligned}
-\frac{\hbar^{2}}{2 \mu} \nabla^{2}{ }_{\mathrm{elec}} \psi_{\mathrm{elec}}-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r} \psi_{\mathrm{elec}}=\mathbf{E}_{\mathrm{elec}} \psi_{\mathrm{elec}} & \\
& \mu=\frac{m_{e} m_{N}}{m_{e}+m_{N}}
\end{aligned}
$$

Separation of variables

The del-squared operator in spherical polar coordinates is:
$\nabla^{2} \Psi=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right) \Psi+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \Psi+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right) \Psi$
It is not possible to solve the equation with all three variables simultaneously. Instead a procedure known as separation of variables is used.

The steps are:

1. Multiply both sides by $2 \mu r^{2}$
2. Substitute in $\Psi(r, \theta, \phi)=R(r) Y(\theta, \phi)$
3. Divide both sides by $R(r) Y(\theta, \phi)$

Using a separation constant called β we can write the Schrodinger equation as two separate equations.

$$
\begin{aligned}
& -\hbar^{2} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right) \Psi-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r} \Psi-\mathbf{E} \psi=-\beta \Psi \\
& \frac{-\hbar^{2}}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \Psi+\frac{-\hbar^{2}}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right) \Psi=\beta \Psi
\end{aligned}
$$

We write the total wave function as a product of two wave functions. $\quad \psi(r, \theta, \phi)=R(r) Y_{m}^{\ell}(\theta, \phi)$
Then we divide the radial equation by $Y_{m}{ }^{\prime}$ and the angular equation by R to get two separate equations.

$$
\begin{gathered}
-\hbar^{2} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right) \mathrm{R}-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r} \mathrm{R}-\mathbf{E R}=-\beta \mathrm{R} \\
-\hbar^{2}\left(\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} Y+\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta} Y\right)\right)=\beta Y
\end{gathered}
$$

