Bohr radius

- The Bohr radius is the radius of the first orbit in the Bohr model. We give it the symbol a_{0} :

$$
a_{0}=\frac{4 \pi \varepsilon_{0} \hbar^{2}}{m e^{2}}
$$

- The Bohr radius is a fundamental unit of distance. It is also called the atomic unit of distance. It is equal to $0.52977 \AA$.

The Quantized Energy Levels

- The energy levels calculated using the Schrödinger equation are given by

$$
E_{n}=-\frac{m e^{4}}{8 \varepsilon_{0}{ }^{2} h^{2}} \frac{1}{n^{2}}=-\frac{R}{n^{2}}
$$

- In units of Bohrs the Rydberg constant is

$$
\mathrm{R}=\frac{m e^{4}}{8 \varepsilon_{0}{ }^{2} h^{2}}=\frac{e^{2}}{\left(4 \pi \varepsilon_{0}\right) 2 a_{0}}
$$

The Rydberg Constant

- The energy levels calculated using the Schrödinger equation permit calculation of the Rydberg constant.
- One major issue is units. Spectroscopists often use units of wavenumber or cm^{-1}. At first this seems odd, but $h \nu=h c / \lambda=h c v$ where \tilde{v} is the value of the transition in wavenumbers.

$$
\widetilde{\mathrm{R}}=\frac{1}{\mathrm{hc}} \frac{m e^{4}}{8 \varepsilon_{0}{ }^{2} h^{2}}
$$

The simple form for H energy levels

Using the Rydberg constant the energy of the hydrogen atom can be written as:

$$
E_{n}=-\frac{\tilde{R}}{n^{2}}
$$

where $\tilde{R}=109,690 \mathrm{~cm}^{-1}$.
In units of eV R $=13.6 \mathrm{eV}$.

